mathleaks.se mathleaks.se Startsida kapitel home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
Expandera meny menu_open Minimera
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open
Algebra och icke-linjära ekvationer

Andragradsekvationer


Videolektion

Mathleaks

play_circle_filled
play_circle_filled
picture_in_picture_alt

Minispelare aktiv

En andragradsekvation är en ekvation där det finns en -term men inga termer av högre grad.

Villkor:

Dessa har noll, en eller två lösningar och det finns flera lösningsmetoder för att bestämma dem. Exempelvis finns det en för att lösa enkla andragradsekvationer som och för mer komplicerade ekvationer kan man använda nollproduktmetoden, -formeln eller kvadratkomplettering.
Metod

Lösa enkla andragradsekvationer

När en andragradsekvation endast innehåller -termer och konstanttermer, t.ex. går den att lösa med hjälp av kvadratrötter.

1

Lös ut
Börja med att lösa ut så att det står ensamt.

2

Dra kvadratroten ur båda led

När står ensamt drar man kvadratroten ur båda led. Eftersom kvadraten av ett negativt tal blir positivt kan andragradsekvationer ha två lösningar. Om man slår in en kvadratrot på räknare kommer man bara att få ett positivt tal eftersom kvadratroten ur ett tal, per definition, är positiv. Den negativa lösningen måste man därför komma ihåg att lägga till själv: Kvadratroten ur är så ekvationens lösningar är och

Om är lika med ett negativt tal, t.ex. har ekvationen icke-reella rötter.
Metod

Nollproduktmetoden

Om en ekvation är skriven som en produkt och är lika med kan den lösas med hjälp av nollproduktmetoden. T.ex. kan ekvationen lösas med denna metod, vilken motiveras av att minst en faktor måste vara för att produkten ska bli

1

Likställ varje faktor med

Genom att sätta varje faktor lika med får man två nya, separata ekvationer:

2

Lös ekvationerna

Man löser nu ekvationerna för att bestämma det eller de -värden som gör att någon av faktorerna blir eftersom dessa värden även löser ursprungsekvationen.

Lösningarna är alltså och

Om ekvationen inte är en produkt måste man faktorisera innan det går att använda nollproduktmetoden.
fullscreen
Uppgift

Lös ekvationen

Visa Lösning
Lösning
Eftersom båda termerna innehåller ett kan vi bryta ut det.
För att högerledet ska bli måste antingen eller vara lika med noll.
Ekvationens lösningar är alltså och
{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward