| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
När man adderar och subtraherar rationella uttryck gäller samma regler som när man adderar och subtraherar bråk. Om de har samma nämnare kan täljarna adderas eller subtraheras direkt.
q(x)p(x)+q(x)h(x)=q(x)p(x)+h(x)
q(x)p(x)−q(x)h(x)=q(x)p(x)−h(x)
Förenkla x1−2xx+2.
De rationella uttrycken har olika nämnare, så vi måste först förlänga det första med 2.
Förläng x1 med 2
Subtrahera bråk
Ta bort parentes & byt tecken
Förenkla termer
Förkorta med x
Skriv minustecken framför bråk
Uttrycket blir alltså −21.
Även vid multiplikation och division gäller samma räkneregler som vid bråkräkning. Täljare multipliceras därför med täljare och nämnare med nämnare.
q(x)p(x)⋅g(x)h(x)=q(x)⋅g(x)p(x)⋅h(x)
De rationella uttrycken behöver inte ha gemensam nämnare för att kunna multipliceras ihop. Vill man dividera två rationella uttryck måste man först invertera kvoten i nämnaren och därefter multiplicera.
q(x)p(x)/g(x)h(x)=q(x)p(x)⋅h(x)g(x)
Förenkla xx2+4/3xx+1.
Multiplicera bråk
Förkorta med x
Multiplicera in 3
På grund av hur räknaren hanterar funktioner är det inte säkert att en funktion med osammanhängande graf verkligen kommer att se osammanhängande ut när grafen ritas. Man kan t.ex. rita den rationella funktionen y=x−21, som inte är definierad för x=2.
På räknaren ser det ut som att grafen hänger ihop i x=2. Jämför man med en korrekt utritad graf är skillnaden tydlig.
Det är alltså viktigt att undersöka hur rimliga räknarens grafer är, framförallt om det finns x-värden som funktionen inte är definierad för.