{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
Proceed to next lesson
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.introSlideInfo.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}

{{ 'ml-heading-lesson-settings' | message }}

{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Regel

Dividera rationella uttryck

Kvoten av två rationella uttryck beräknas genom att invertera uttrycket i nämnaren och därefter multiplicera dem. Räknereglerna är alltså samma som vid division av bråk.

Villkor

Odefinierade värden
När man skriver om en division av rationella uttryck som en multiplikation kan uttryckets definitionsmängd förändras. Exempelvis är uttrycket
odefinierat för -värdena och eftersom de tre nämnarna i uttrycket är lika med noll för dessa -värden. Det omskrivna uttrycket
är däremot odefinierat endast för -värdena och Likhetstecknet i gäller alltså endast för vissa -värden, i detta fall för alla utom