mathleaks.se mathleaks.se Startsida kapitel home Startsida Historik history Historik expand_more Community
Community expand_more
menu_open Stäng
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
Expandera meny menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open
article Artikel
menu_book Lösningar till böcker
school eKurser
question_answer Community
description Uppgiftsblad
calculate Math Solver
arrow_back arrow_forward

Regel

Bryt ut minustecken

Man kan alltid bryta ut ett minustecken i ett uttryck. Detta är samma sak som att bryta ut -1 där 1:an är underförstådd. Gör man detta kommer alla termer i uttrycket byta tecken. För ett uttryck på formen ab är det ofta praktiskt att göra följande omskrivning i samband med utbrytningen.

Regel

ab=-(ba)

Man kan visa att ab=-(ba) genom att bl.a. använda att "minus gånger minus blir plus" baklänges, som i fallet 5=-1(-5). Men först utnyttjar man att subtraktion är samma sak som addition av det negativa talet, som för -5=+(-5).

ab
a+(-b)
(-1)(-a)+(-1)b
(-1)(-a+b)
(-1)(ba)
-(ba)

När man bryter ut minustecknet byter alltså a och b tecken och man kan då också, om man vill, byta plats på termerna så att den positiva termen alltid står först. Ibland behöver man bryta ut ett minustecken för att kunna förkorta rationella uttryck.

{{ 'ml-article-textbook-solutions-heading' | message }}

{{ 'ml-article-textbook-solutions-description' | message }}

{{ 'ml-article-textbook-solutions-expert-solutions' | message }}

{{ 'ml-article-textbook-solutions-math-solver-scanner' | message }}

{{ 'ml-article-textbook-solutions-answers-hints-steps' | message }}

{{ 'ml-article-ecourses-heading' | message }}

{{ 'ml-article-ecourses-description' | message }}

{{ 'ml-article-ecourses-interactive' | message }}

{{ 'ml-article-ecourses-chapter-tests' | message }}

{{ 'ml-article-ecourses-exercise-levels' | message }}

{{ 'ml-article-ecourses-rank-stats' | message }}

{{ 'ml-article-ecourses-video-lessons' | message }}

{{ 'ml-article-ecourses-course-theory' | message }}

{{ 'ml-article-ecourses-join-classroom' | message }}

{{ 'ml-article-ecourses-graphing-calculator' | message }}

{{ 'ml-article-ecourses-quiz-games' | message }}

{{ 'ml-article-ecourses-study-together' | message }}

{{ 'ml-article-community-heading' | message }}

{{ 'ml-article-community-description' | message }}

{{ 'ml-article-community-create-and-share-channels' | message }}

{{ 'ml-article-community-share-content-and-challenge' | message }}

{{ 'ml-article-community-cooperate-with-friends' | message }}

{{ 'ml-article-worksheets-heading' | message }}

{{ 'ml-article-worksheets-description' | message }}

{{ 'ml-article-worksheets-course1' | message }}

{{ 'ml-article-worksheets-course2' | message }}

{{ 'ml-article-worksheets-course3' | message }}

{{ 'ml-article-worksheets-course4' | message }}

{{ 'ml-article-math-solver-heading' | message }}

{{ 'ml-article-math-solver-description' | message }}

{{ 'ml-article-math-solver-photo-scan-solve' | message }}

{{ 'ml-article-math-solver-step-by-step' | message }}

{{ 'ml-article-math-solver-graph-math-problem' | message }}