{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Mathleaks Videolektion

Mathleaks

play_circle_filled
play_circle_filled
Mathleaks
picture_in_picture_alt

Minispelare aktiv

Alla andragradsekvationer kan skrivas på formen
där och är konstanter. Detta kan kallas -form. Koefficienten framför ska vara och ena ledet , som i ekvationen
För att lösa den sätter man in koefficienten framför , kallad , samt konstanttermen, , i den så kallade -formeln.

I ekvationen är och . Genom insättning och förenkling får man maximalt två lösningar: en genom att addera och en genom att subtrahera rotuttrycket. Om ekvationen inte är skriven på -form måste den skrivas om innan -formeln kan användas.

Härledning

För att härleda -formeln utgår man från en andragradsekvation på -form, och kvadratkompletterar för att lösa ut . Man börjar med att skriva om ekvationen på formen .
Nu kan man kvadratkomplettera genom att lägga till "halva koefficienten framför i kvadrat", :
Man kan nu faktorisera vänsterledet med första kvadreringsregeln. Man kan ju skriva om mittentermen som Därefter drar man roten ur båda led och löser ut .

Exempel

Lös andragradsekvationen med -formeln

fullscreen
Lös andragradsekvationen med -formeln.
Visa Lösning expand_more

Ekvationen är skriven på -form så vi kan använda -formeln direkt. är 8 och är

Ekvationens lösningar är och

Regel

-formeln

I Sverige använder man oftast -formeln när man löser andragradsekvationer av typen . I vissa länder använder man istället en annan motsvarande metod, den så kallade -formeln. Den används för andragradsekvationer på formen .

Villkor:

Den har färre begränsningar än -formeln eftersom koefficienten framför inte måste vara Däremot kan -formeln ibland ge lite jobbigare beräkningar.
Laddar innehåll