Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Parentesmultiplikation

Inom matematiken uppkommer det ofta situationer där man behöver multiplicera in ett tal i en parentes. Då multipliceras talet med alla termer i parentesen.

Law of distr 2a.svg

Om man istället behöver multiplicerar ihop två parenteser ska man multiplicera alla termer i ena parentesen med alla termer i den andra.

Utv distr lagen 2.svg
Regel

Kvadreringsreglerna

När en parentes med två termer multipliceras med sig själv, dvs. kvadreras, kan beräkningarna underlättas med de så kallade kvadreringsreglerna. De kan alltså tillämpas för att förenkla och beräkna uttryck som (x+2)2och(3x)2. (x+2)^2 \quad \text{och} \quad (3-x)^2. Beroende på om det står ett plus- eller minustecken mellan termerna används första eller andra kvadreringsregeln.

Regel

Första kvadreringsregeln

Står det ett plustecken mellan termerna i parentesen kan man använda första kvadreringsregeln.

Regel

info
(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
Den första kvadreringsregeln kan härledas genom att skriva kvadraten som en multiplikation av två likadana parenteser.
(a+b)2(a + b)^2
(a+b)(a+b)(a + b)(a + b)
aa+ab+ba+bba\cdot a + a \cdot b + b \cdot a + b \cdot b
a2+ab+ab+b2a^2 + ab + ab + b^2
a2+2ab+b2a^2 + 2ab + b^2
Man får alltså att (a+b)2=a2+2ab+b2. (a + b)^2 = a^2 + 2ab + b^2.
Regel

Andra kvadreringsregeln

Står det ett minustecken mellan termerna i parentesen kan man använda andra kvadreringsregeln.

Regel

info
(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
Den andra kvadreringsregeln kan härledas genom att skriva kvadraten som en multiplikation av två likadana parenteser.
(ab)2(a - b)^2
(ab)(ab)(a - b)(a - b)
aa+a(-b)+(-b)a+(-b)(-b)a\cdot a + a \cdot (\text{-} b) + (\text{-} b) \cdot a + (\text{-} b) \cdot (\text{-} b)
a2abab+b2a^2 - ab - ab + b^2
a22ab+b2a^2 - 2ab + b^2
Man får alltså att (ab)2=a22ab+b2. (a - b)^2 = a^2 - 2ab + b^2.
Uppgift

Förenkla (x+3)2(x+3)^2 och (7x)2(7-x)^2 med kvadreringsreglerna.

Lösning
Den första parentesen har ett plustecken mellan termerna så vi använder första kvadreringsregeln.
(x+3)2(x+3)^2
(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2
x2+2x3+32x^2+2\cdot x\cdot3+3^2
x2+6x+32x^2+6x+3^2
x2+6x+9x^2+6x+9
Den andra parentesen har ett minustecken mellan termerna så vi använder andra kvadreringsregeln.
(7x)2(7-x)^2
(ab)2=a22ab+b2(a-b)^2=a^2-2ab+b^2
7227x+x27^2-2\cdot7\cdot x +x^2
4927x+x249-2\cdot7\cdot x +x^2
4914x+x249-14x +x^2

Uttrycken kan alltså utvecklas till x2+6x+9x^2+6x+9 respektive 4914x+x2.49-14x +x^2.

info Visa lösning Visa lösning
Regel

Konjugatregeln

Om två parenteser på formen (a+b)(a+b) och (ab)(a-b) ska multipliceras ihop kan beräkningarna underlättas med den så kallade konjugatregeln. Exempelvis kan regeln användas för förenkling av (x+5)(x5)och(2+6y)(26y). (x+5)(x-5) \quad \text{och} \quad (2+6y)(2-6y). Två parenteser på den här formen är varandras konjugat, och därför kallas detta konjugatregeln.

Regel

info
(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
Konjugatregeln kan härledas genom att utföra multiplikationen av parenteserna med hjälp av vanlig parentesmultiplikation.
(a+b)(ab)(a + b)(a - b)
aa+a(-b)+ba+b(-b)a \cdot a + a \cdot (\text{-} b) + b \cdot a + b \cdot (\text{-} b)
a2ab+abb2a^2 - ab + ab - b^2
a2b2a^2 - b^2
Man får alltså att (a+b)(ab)=a2b2. (a + b)(a - b) = a^2 - b^2.
Uppgift

Utveckla (x+3)(x3)(x+3)(x-3) med konjugatregeln.

Lösning

När man använder konjugatregeln kvadrerar man den första termen och subtraherar sedan med kvadraten av den andra.

(x+3)(x3)(x+3)(x-3)
(a+b)(ab)=a2b2(a+b)(a-b)=a^2-b^2
x232x^2-3^2
x29x^2-9

Man får alltså x29.x^2-9.

info Visa lösning Visa lösning
{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward