Regel

Kvadreringsreglerna

När en parentes med två termer multipliceras med sig själv, dvs. kvadreras, kan beräkningarna underlättas med de så kallade kvadreringsreglerna. De kan alltså tillämpas för att förenkla och beräkna uttryck som (x+2)2och(3x)2. (x+2)^2 \quad \text{och} \quad (3-x)^2. Beroende på om det står ett plus- eller minustecken mellan termerna används första eller andra kvadreringsregeln.

Regel

Första kvadreringsregeln

Står det ett plustecken mellan termerna i parentesen kan man använda första kvadreringsregeln.

Regel

(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
Den första kvadreringsregeln kan härledas genom att skriva kvadraten som en multiplikation av två likadana parenteser.
(a+b)2(a + b)^2
(a+b)(a+b)(a + b)(a + b)
aa+ab+ba+bba\cdot a + a \cdot b + b \cdot a + b \cdot b
a2+ab+ab+b2a^2 + ab + ab + b^2
a2+2ab+b2a^2 + 2ab + b^2
Man får alltså att (a+b)2=a2+2ab+b2. (a + b)^2 = a^2 + 2ab + b^2.
Regel

Andra kvadreringsregeln

Står det ett minustecken mellan termerna i parentesen kan man använda andra kvadreringsregeln.

Regel

(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
Den andra kvadreringsregeln kan härledas genom att skriva kvadraten som en multiplikation av två likadana parenteser.
(ab)2(a - b)^2
(ab)(ab)(a - b)(a - b)
aa+a(-b)+(-b)a+(-b)(-b)a\cdot a + a \cdot (\text{-} b) + (\text{-} b) \cdot a + (\text{-} b) \cdot (\text{-} b)
a2abab+b2a^2 - ab - ab + b^2
a22ab+b2a^2 - 2ab + b^2
Man får alltså att (ab)2=a22ab+b2. (a - b)^2 = a^2 - 2ab + b^2.

{{ 'ml-template-article-upsell1' | message }}

{{ 'ml-template-article-upsell2' | message }}

{{ 'ml-template-article-upsell3' | message }}