| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
I den här lektionen går vi igenom följande begrepp:
Figurer som exempelvis trianglar, cirklar och rektanglar har areaformler, men för att bestämma arean av mer generella figurer, t.ex. den nedan, behövs andra metoder.
Då kan man använda integraler. Det är ett brett räkneverktyg som handlar om att beräkna summor och används till mycket mer än bara areaberäkningar. Idén bygger på att dela upp problemet i mindre bitar som är lättare att räkna på, och sedan lägga ihop dessa. I fallet med area delas figuren in i rektanglar.
För att bestämma figurens area algebraiskt ställer man upp ett generellt uttryck för rektanglarnas areor. Det gör man lättast genom att placera figuren i ett koordinatsystem, med figurens bas på x-axeln. Rektanglarna har olika höjd, som bestäms av någon funktion f(x), men de har alla samma bredd, kallad Δx.
A=Δx→0lim(f(x1)Δx+f(x2)Δx+…+f(xn)Δx)
Det är det här gränsvärdet man kallar integral. För att slippa skriva ut en så lång summa använder man en kortare notation.
När bredden går mot 0, dvs. när rektanglarna blir oändligt tunna
, brukar man skriva dx istället för Δx. Funktionen f(x) som integreras kallas integrand, medan talen a och b kallas integrationsgränser. Dessa definierar områdets vänstra respektive högra gräns.
Ställ upp en integral som beskriver arean av det markerade området.
Identifiera var området startar och slutar på x-axeln.
När en graf ligger ovanför x-axeln kan integralen tolkas som arean mellan grafen och x-axeln. Men gäller samma sak när grafen går under x-axeln?
Sen tidigare är det klart att värdet av en integral, här kallad I, definieras som gränsvärdet av en summa av rektangelareor, uttryckta som f(x)Δx. En viktig skillnad jämfört med tidigare är dock att funktionsvärdena är negativa när grafen går under x-axeln.
Man börjar med att markera det eller de områden mellan grafen och x-axeln som definieras av integralen. I detta fall ska integralen beräknas mellan x-värdena 0 och 9, vilket motsvarar följande två områden.
Värdet på integralen bestäms på olika sätt beroende på om den beskriver ett eller flera områden.
Använd följande funktion för att besvara de givna frågorna.
Detta område kan delas upp i två olika delar — en rektangel och en triangel. Rektangeln har en bas på 5 enheter och en höjd på 2 enheter. Triangeln, å andra sidan, har både en bas och en höjd på 2 enheter.
Areorna beräknas med hjälp av formlerna för rektangel och triangel.
Formel | Area | |
---|---|---|
Rektangel (A1) | A=b⋅h | A1=5⋅2=10 |
Triangel (A2) | A=2b⋅h | A2=22⋅2=2 |
För att hitta den totala arean, dela upp den i grundläggande former som rektanglar eller trianglar. Med hänsyn till areorna i del A behöver två ytterligare områden beräknas.
Integralen från x=0 till x=12 inkluderar två ytterligare områden.