{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}

I den här lektionen går vi igenom följande begrepp:

  • Logaritmen av en potens
  • Tiologaritmen av
  • Tiologaritmen av
Regel

Logaritmen av en potens

Om man logaritmerar en potens kan den skrivas om genom att flytta ner exponenten.

Man kan visa det med potenslagar.
Skriv om
Regeln gäller endast för positiva och reella
Regel

Tiologaritmen av

Tiologaritmen av är eftersom är det tal man ska höja upp till för att det ska bli

Regel

Tiologaritmen av

Tiologaritmen av är eftersom är det tal man ska höja upp till för att det ska bli Alla tal (förutom upphöjt till är och därför är

Exempel

Lös ekvationen med logaritmlagen för potenser

Vad ska stå istället för för att följande likhet ska gälla? Lös uppgiften utan räknare.

Ledtråd

Skriv om som en potens med basen och använd sedan logaritmlagen för potenser.

Lösning

Varken eller går att enkelt beräkna utan en miniräknare, men om vi kan skriva om som någonting gånger kan vi lösa ekvationen utan att faktiskt behöva räkna ut någon logaritm. Vi skriver om som och använder därefter logaritmlagen för potenser.
Med hjälp av logaritmlagen lyckades vi bli av med alla logaritmer utan att behöva räkna ut dem och kom fram till svaret
Övning

Practicing the Logarithm Power Rule

Use the law of logarithms for powers and the special cases for common logarithms to solve the equation.

Laddar innehåll