| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
I den här lektionen går vi igenom följande begrepp:
Den följande appen visar hur grafen för en andragradsfunktion f(x)=ax2+bx+c förändras när värdena för de konstanterna a, b, och c ändras.
x=1
Beräkna potens & produkt
Addera och subtrahera termer
x=2
Förenkla potens & produkt
Addera och subtrahera termer
Nu kan man sammanbinda punkterna för att bilda sig en uppfattning om andragradskurvans utseende. Kurvan ska ha formen av en parabel som vänder i extrempunkten.
Bestäm den begärda informationen för den givna andragradsfunktionen.
Prova att flytta de tre punkterna och se hur en andragradskurva genom dem ser ut.
x=9
Beräkna potens & produkt
(−a)b=−ab
Addera termer
För enkelhetens skull, bestäm y-interceptet, vilket ges av konstanttermen c i funktionsuttrycket. I detta fall är denna term lika med 0, vilket innebär att y-interceptet inträffar vid (0,0) — origo.
Nu kan en annan punkt som ligger på parabeln hittas genom att spegla denna punkt i symmetrilinjen.
Den tredje punkten som ligger på parabeln är (18;0).
Slutligen kommer punkterna att kopplas samman med en jämn kurva för att rita den paraboliska formen. Eftersom funktionen representerar en hunds hopp, kommer negativa värden av funktionen inte att inkluderas.