{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Förklaring

Varför ligger två punkter med samma -värde lika långt från symmetrilinjen?

För en andragradskurva gäller det att två punkter med samma -värde alltid befinner sig lika långt från funktionens symmetrilinje.

För att motivera det kan man använda egenskapen att andragradskurvor är spegelsymmetriska kring sin symmetrilinje. Om man tänker sig att man speglar en punkt i symmetrilinjen kommer den avbildas på andra sidan på lika långt från linjen i -led, och på samma höjd i -led. Därför gäller även det omvända: punkter på samma -värde ligger lika långt ifrån symmetrilinjen.

-formeln

Denna princip utnyttjas även för att hitta nollställena till en andragradsfunktion dvs. lösningen till ekvationen med -formeln:
Symmetrilinjen till ges av -formelns första term, Principen bakom -formeln är att, precis som ovan, hitta de punkter som ligger på samma avstånd från symmetrilinjen och har samma -värde, i det här fallet .

Man är alltså ute efter kurvans nollställen, och dem hittar man genom att addera respektive subtrahera kvadratroten ur diskriminanten från symmetrilinjen.

Laddar innehåll