{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
För att motivera det kan man använda egenskapen att andragradskurvor är spegelsymmetriska kring sin symmetrilinje. Om man tänker sig att man speglar en punkt i symmetrilinjen kommer den avbildas på andra sidan på lika långt från linjen i x-led, och på samma höjd i y-led. Därför gäller även det omvända: punkter på samma y-värde ligger lika långt ifrån symmetrilinjen.
Man är alltså ute efter kurvans nollställen, och dem hittar man genom att addera respektive subtrahera kvadratroten ur diskriminanten från symmetrilinjen.