| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Minispelare aktiv
Två linjer som dras från en cirkelbåges ändpunkter och möts i en tredje punkt på cirkelns rand bildar en randvinkel. De tre gröna vinklarna är randvinklar.
Medelpunktsvinkeln u och randvinkeln v spänner upp samma cirkelbåge.
Enligt randvinkelsatsen är då u dubbelt så stor som v.
u=2v
Bestäm vinklarna u och v.
Vinkeln v och 49∘-vinkeln är randvinklar till samma cirkelbåge.
Det betyder att de är lika stora, så v=49∘. Medelpunktsvinkeln u spänner upp samma cirkelbåge som randvinklarna.
Från randvinkelsatsen följer några andra samband som kan vara bra att känna till.
För en fyrhörning inskriven i en cirkel, dvs. hörnen ligger på cirkelns rand, är summan av motstående vinklar 180∘.
I den inskrivna fyrhörningen ABCD är vinkeln ABC 105∘. Bestäm fyrhörningens övriga vinklar.
Vinkeln vid hörn A är randvinkel till en halvcirkel eftersom sträckan BD är diameter. Det betyder att vinkel A är 90∘ enligt en av följdsatserna till randvinkelsatsen.
∧BCD är också rät eftersom den är randvinkel på den andra halvcirkeln.
Vi vet också att ∧ABC är 105∘.
Det första fallet inträffar när ett av vinkelbenen till randvinkeln går igenom medelpunkten, vilket gör att det går genom ett av vinkelbenen till medelpunktsvinkeln. Detta innebär också att det vinkelbenet utgör en diameter i cirkeln.
I det andra fallet skär inte något av randvinkelns vinkelben något ben till medelpunktsvinkeln.
För att visa randvinkelsatsen för den här situationen ritar man in en diameter från randvinkeln som delar både den och medelpunktsvinkeln i två delvinklar.
u1=2v1 och u2=2v2
Bryt ut 2
v1+v2=v
Det sista fallet som behöver undersökas är när ett av randvinkelns vinkelben skär ett av medelpunktsvinkelns ben.
På samma sätt som i förra fallet ritas en diameter in från randvinkeln. Denna gång delar den dock inte vinklarna, utan skapar nya rand- och medelpunktsvinklar, varav ett par är större än de ursprungliga.
u1=2v1 och u2=2v2
Bryt ut 2
v1−v2=v
Randvinkelsatsen gäller alltså för alla tre fall.