Logga in
Deriveringsregeln gäller för alla reella n. Ibland kan man dock behöva göra vissa omskrivningar för att kunna använda regeln.
Man kan motivera regeln genom att visa att den exempelvis gäller då n=2, alltså för funktionen f(x)=x2. Man gör detta med hjälp av derivatans definition.
f(x+h)=(x+h)2 och f(x)=x2
Utveckla med första kvadreringsregeln
Förenkla termer
Dela upp i faktorer
Bryt ut h
Förenkla kvot
h→0
Även funktionen f(x)=x går att derivera med deriveringsregeln för potensfunktioner, eftersom x är en potens med graden 1. Ofta brukar man dock använda en snabbare väg, nämligen regeln som säger att D(x)=1, som härleds här.
Derivera funktion
D(xn)=nxn−1
a0=1