| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Minispelare aktiv
x=−2p±(2p)2−q
I ekvationen x2+6x−5=0 är p=6 och q=−5. Genom insättning och förenkling får man maximalt två lösningar: en genom att addera och en genom att subtrahera rotuttrycket. Om ekvationen inte är skriven på pq-form måste den skrivas om innan pq-formeln kan användas.
Omarrangera termer
a=2⋅2a
Faktorisera med första kvadreringsregeln
VL=HL
VL−2p=HL−2p
Ekvationen är skriven på pq-form så vi kan använda pq-formeln direkt. p är 8 och q är −20.
Använd pq-formeln: p=8,q=−20
Beräkna kvot
Beräkna potens
a−(−b)=a+b
Beräkna rot
Ange lösningar
Ekvationens lösningar är x=−10 och x=2.
I Sverige använder man oftast pq-formeln när man löser andragradsekvationer av typen x2+px+q=0. I vissa länder använder man istället en annan motsvarande metod, den så kallade abc-formeln. Den används för andragradsekvationer på formen ax2+bx+c=0.
x=−2ab±2ab2−4ac
Villkor: a=0