{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Begrepp

Räta linjens ekvation

En funktion som beskriver en rät linje i ett koordinatsystem kallas linjär och skrivs oftast på så kallad -form.

- och -värdet är konstanter som beskriver linjens egenskaper.
Begrepp

-värde

För en rät linje anger konstanten lutningen för linjen, alltså antalet steg linjen rör sig i -led när man går 1 steg åt höger i -led. Denna lutning kallas oftast bara för -värde eller ibland riktningskoefficient. Ett positivt -värde betyder att linjen lutar uppåt medan ett negativt -värde innebär att den lutar nedåt. Om är har linjen ingen lutning och blir då horisontell.

Formeln för att beräkna -värdet för en linje kan skrivas på två sätt.

är den grekiska bokstaven delta och brukar beteckna skillnad, så enligt formeln beräknar man skillnaden i -värde mellan två punkter på linjen, och och dividerar med skillnaden mellan -värdena. Vilka punkter som används spelar ingen roll, så länge de båda ligger på linjen.

Drar man i punkterna kan man se att -värdet för linjen är konstant även om skillnaden i och -led förändras.

Exempel

Bestäm en linjes lutning från en graf

fullscreen

Bestäm linjens lutning i koordinatsystemet grafiskt.

Visa Lösning expand_more

I koordinatsystemet är steg längs -axeln lika stort som steg längs -axeln. Därför kan vi bestämma linjens lutning genom att räkna antalet steg man måste gå i -led för varje steg man går i -led.

Man går alltså steg uppåt vilket betyder att linjens lutning är

Exempel

Bestäm en linjes lutning med två punkter

fullscreen

Vad är lutningen för linjen som går genom punkterna och

Visa Lösning expand_more

Lutningen på en linje ges av -värdet och detta kan beräknas med -formeln, dvs. genom att dividera skillnaden i -led med skillnaden i -led. Vi sätter in punkternas koordinater i formeln. Det spelar ingen roll i vilken ordning de sätts in så länge den är samma i täljaren och nämnaren.

Linjen har lutningen .


Begrepp

-värde

För en rät linje skriven på k-form, kan konstanten tolkas som ett mått på linjens förskjutning i -led från origo. Det läses av som det -värde där linjen skär -axeln.

Metod

Bestämma räta linjens ekvation algebraiskt

Man kan bestämma ekvationen för en linje om man vet att linjen går genom två punkter, t.ex.
1
Bestäm -värdet
expand_more

Linjens -värde kan bestämmas med -formeln. Man kan exempelvis låta vara punkt och vara punkt 2.

Därefter sätter man in koordinaterna i -formeln.
2
Bestäm -värdet
expand_more
När man har bestämt -värdet sätter man in det i -formen. I det här fallet får man
Med hjälp av en av de kända punkterna, t.ex. kan man nu bestämma Man sätter alltså in punktens koordinater och löser ut
3
Bestäm linjens ekvation
expand_more
Nu vet man både - och -värdet, och då kan man ställa upp linjens ekvation. I det här fallet blir den
Laddar innehåll