Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Linjära funktioner

Begrepp

Räta linjens ekvation

En funktion som beskriver en rät linje i ett koordinatsystem kallas linjär och skrivs oftast på så kallad kk-form.

y=kx+my=kx+m

kk- och mm-värdet är konstanter som beskriver linjens egenskaper.
Begrepp

kk-värde

För en rät linje anger konstanten kk lutningen för linjen, alltså antalet steg linjen rör sig i yy-led när man går 1 steg åt höger i xx-led. Denna lutning kallas oftast bara för kk-värde eller ibland riktningskoefficient. Ett positivt kk-värde betyder att linjen lutar uppåt medan ett negativt kk-värde innebär att den lutar nedåt. Om kk är 00 har linjen ingen lutning och blir då horisontell.

Formeln för att beräkna kk-värdet för en linje kan skrivas på två sätt.

k=ΔyΔxellerk=y2y1x2x1 k=\dfrac{\Delta y}{\Delta x} \quad \text{eller} \quad k=\dfrac{y_2-y_1}{x_2-x_1}

Δ\Delta är den grekiska bokstaven delta och brukar beteckna skillnad, så enligt formeln beräknar man skillnaden i yy-värde mellan två punkter på linjen, (x1,y1)(x_1,y_1) och (x2,y2),(x_2,y_2), och dividerar med skillnaden mellan xx-värdena. Vilka punkter som används spelar ingen roll, så länge de båda ligger på linjen.

Drar man i punkterna kan man se att kk-värdet för linjen är konstant även om skillnaden i xx och yy-led förändras.
Uppgift

Bestäm linjens lutning i koordinatsystemet grafiskt.

Lösning

I koordinatsystemet är 11 steg längs xx-axeln lika stort som 11 steg längs yy-axeln. Därför kan vi bestämma linjens lutning genom att räkna antalet steg man måste gå i yy-led för varje steg man går i xx-led.

Man går alltså 33 steg uppåt vilket betyder att linjens lutning är k=3.k=3.

info Visa lösning Visa lösning
Uppgift

Vad är lutningen för linjen som går genom punkterna (2,1)(2,1) och (4,5)?(4,5)?

Lösning

Lutningen på en linje ges av kk-värdet och detta kan beräknas med kk-formeln, dvs. genom att dividera skillnaden i yy-led med skillnaden i xx-led. Vi sätter in punkternas koordinater i formeln. Det spelar ingen roll i vilken ordning de sätts in så länge den är samma i täljaren och nämnaren.

k=y2y1x2x1k = \dfrac{y_2-y_1}{x_2-x_1}
k=5142k = \dfrac{{\color{#0000FF}{5}}-{\color{#009600}{1}}}{{\color{#0000FF}{4}}-{\color{#009600}{2}}}
k=42k = \dfrac{4}{2}
k=2k = 2

Linjen har lutningen 22.


info Visa lösning Visa lösning
Begrepp

mm-värde

För en rät linje skriven på k-form, kan konstanten mm tolkas som ett mått på linjens förskjutning i yy-led från origo. Det läses av som det yy-värde där linjen skär yy-axeln.

Metod

Bestämma räta linjens ekvation algebraiskt

Man kan bestämma ekvationen för en linje om man vet att linjen går genom två punkter, t.ex. (2,-1)och(7,19).\begin{aligned} (2,\text{-}1) \quad \text{och} \quad (7,19). \end{aligned}

1

Bestäm kk-värdet

Linjens kk-värde kan bestämmas med kk-formeln. Man kan exempelvis låta (2,-1)(2,\text{-}1) vara punkt 11 och (7,19)(7,19) vara punkt 2.

(2,-1)(7,19)x1,y1 x2,y2\begin{aligned} (2,\text{-}1) \quad \quad (7,19) \\ x_1,y_1 \quad \quad \ x_2,y_2 \end{aligned}

Därefter sätter man in koordinaterna i kk-formeln.
k=y2y1x2x1k = \dfrac{y_2 - y_1}{x_2 - x_1}
k=19(-1)72k = \dfrac{{\color{#0000FF}{19}} - ({\color{#009600}{\text{-}1}})}{{\color{#0000FF}{7}} - {\color{#009600}{2}}}
k=19+172k = \dfrac{19 + 1}{7 - 2}
k=205k = \dfrac{20}{5}
k=4k = 4

2

Bestäm mm-värdet

När man har bestämt kk-värdet sätter man in det i kk-formen. I det här fallet får man y=4x+m. y = 4x + m. Med hjälp av en av de kända punkterna, t.ex. (7,19),(7,19), kan man nu bestämma m.m. Man sätter alltså in punktens koordinater och löser ut m.m.

y=4x+my = 4x + m
19=47+m{\color{#009600}{19}} = 4 \cdot {\color{#0000FF}{7}} + m
19=28+m19 = 28 + m
28+m=1928 + m = 19
m=-9m = \text{-}9

3

Bestäm linjens ekvation

Nu vet man både kk- och mm-värdet, och då kan man ställa upp linjens ekvation. I det här fallet blir den y=4x9.\begin{aligned} y=4x-9. \end{aligned}

{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward