{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}
Regel

Derivatan av exponentialfunktioner

Härledning

För att visa varför derivatan till är kan man använda derivatans definition.
Eftersom inte påverkas av att går mot kan man placera utanför gränsvärdet:
Man kan visa att gränsvärdet är lika med (detta är ett så kallat standardgränsvärde). Det medför att

Härledning

För att visa varför regeln gäller kan man skriva om basen i exponentialfunktionen enligt sambandet . Sedan använder man deriveringsreglerna för exponentialfunktioner med basen

Uttrycken och är alltså ekvivalenta och man kan nu använda deriveringsregeln för att derivera Därefter skrivs om till igen.
När man deriverar funktioner på formen
kan man se dem som sammansatta funktioner och därför använda kedjeregeln. De yttre funktionerna är respektive och i båda fallen är den inre funktionen Man får då derivatan
Det är alltså inte nödvändigt att minnas de särskilda deriveringsreglerna för respektive om man känner till kedjeregeln.