Logga in
Karin.hedin@osteraker.se (Diskussion | bidrag) | Karin.hedin@osteraker.se (Diskussion | bidrag) | ||
Rad 280: | Rad 280: | ||
--> | --> | ||
− | <jsxgpre id="polynomialDerivative" class="jxgbox jsx-canvas">var b=mlg.board([-5.5,1.3,5.5,-1.0],{desktopSize:'medium'}); | + | <jsxgpre id="polynomialDerivative" class="jxgbox jsx-canvas"> |
+ | var b=mlg.board([-5.5,1.3,5.5,-1.0],{desktopSize:'medium'}); | ||
Rad 454: | Rad 455: | ||
b.hide(expStay, 800); | b.hide(expStay, 800); | ||
b.show(expAfter, 1200); | b.show(expAfter, 1200); | ||
− | setTimeout(function() {stepUp();}, | + | setTimeout(function() {stepUp();},1200); |
} | } | ||
else if (step === 4) { | else if (step === 4) { | ||
Rad 486: | Rad 487: | ||
expSub = b.txt(par.X() + 1.91*tScale, par.Y() + 0.16*tScale, '- 1', {opacity:0, fontsize:tScale}); | expSub = b.txt(par.X() + 1.91*tScale, par.Y() + 0.16*tScale, '- 1', {opacity:0, fontsize:tScale}); | ||
− | expAfter = b.txt(par.X() + | + | expAfter = b.txt(par.X() + 1.44*tScale, par.Y() + 0.16*tScale, '\\text{-}6', {opacity:0, fontsize:tScale}); |
Rad 528: | Rad 529: | ||
//Börja med x^4 | //Börja med x^4 | ||
− | mlg.cf("polynomialDifferentiation.X4");</jsxgpre> | + | mlg.cf("polynomialDifferentiation.X4"); |
+ | </jsxgpre> | ||
Deriveringsregeln gäller för alla reella n. Ibland kan man dock behöva göra vissa omskrivningar för att kunna använda regeln.
Man kan motivera regeln genom att visa att den exempelvis gäller då n=2, alltså för funktionen f(x)=x2. Man gör detta med hjälp av derivatans definition.
f(x+h)=(x+h)2 och f(x)=x2
Utveckla med första kvadreringsregeln
Förenkla termerna
Dela upp i faktorer
Bryt ut h
Förenkla kvot
h→0
Deriveringsregeln gäller alltså när n=2, och det går att visa det för alla n också.
Även funktionen f(x)=x går att derivera med deriveringsregeln för potensfunktioner, eftersom x är en potens med graden 1. Ofta brukar man dock använda en snabbare väg, nämligen regeln som säger att D(x)=1, som härleds här.
Derivera funktion
D(xn)=nxn−1
a0=1