Innehållsförteckning
Logga in
| 4 sidor teori |
| 12 Uppgifter - Nivå 1 - 3 |
| Varje lektion är menad motsvara 1-2 lektioner i klassrummet. |
På 1700−talet upptäckte matematikern Leonhard Euler ett samband mellan komplexa tal och talet e. Han visade att om man sätter en imaginär exponent, iv, på e kan man med hjälp av trigonometriska funktioner skriva potensen på följande sätt.
eiv=cos(v)+isin(v)
Detta samband kallas Eulers formel. Jämför man högerledet med ett komplext tal på trigonometrisk form, r(cos(v)+isin(v)), ser man att det enda som skiljer dem åt är absolutbeloppet r. Genom att multiplicera båda led i Eulers formel med r får man ett nytt sätt att representera de komplexa talen.
reiv=r(cos(v)+isin(v))
Sätt in uttryck
z1z2=r1r2⋅ei(v1+v2)
Multiplicera faktorer
a=33⋅a
Addera bråk
Sätt in uttryck
z2z1=r2r1⋅ei(v1−v2)
Beräkna kvot
Subtrahera bråk