{{ option.label }} add
menu_book {{ printedBook.name}}
arrow_left {{ state.menu.current.label }}
{{ option.icon }} {{ option.label }} arrow_right
arrow_left {{ state.menu.current.current.label }}
{{ option.icon }} {{ option.label }}
arrow_left {{ state.menu.current.current.current.label }}
{{ option.icon }} {{ option.label }}
Mathleaks
Använd offline
Expandera meny menu_open
Klassisk geometri

Vinklar

{{ 'ml-article-collection-answers-hints-solutions' | message }}
tune
{{ topic.label }}
{{tool}}
{{ result.displayTitle }}
{{ result.subject.displayTitle }}
navigate_next

Kanaler

Direktmeddelanden


Videolektion

Mathleaks

play_circle_filled
play_circle_filled
picture_in_picture_alt

Minispelare aktiv

Vinklar kan ges namn som trubbig eller spetsig baserat på hur stora de är, men de kan även ges namn baserat på hur de förhåller sig till varandra. Exempel på den sortens vinklar är sidovinklar, vertikalvinklar, likbelägna vinklar och alternatvinklar.

Begrepp

Bisektris

En bisektris är en stråle som delar en vinkel i två lika stora delvinklar.

Bisektris

Begrepp

Sidovinklar

Sidovinklar är två närliggande vinklar som tillsammans bildar en rak vinkel. I figuren är u och v sidovinklar.


En rak vinkel är , så om man adderar sidovinklar blir summan alltid .

Begrepp

Vertikalvinklar

Vinklar som bildas på motsatt sida om skärningspunkten mellan två linjer kallas vertikalvinklar. I figuren är de blå vinklarna vertikalvinklar, men även de gröna. Vertikalvinklar är alltid lika stora oavsett hur linjerna skär varandra.

Begrepp

Likbelägna vinklar

Likbelägna vinklar är ett par av vinklar som bildas av en transversal när den skär två andra linjer. Vinklarna kallas likbelägna eftersom de bildas på "samma ställe" i förhållande till skärningspunkterna. Likbelägna vinklar är lika stora om linjerna L1 och L2 är parallella.

Begrepp

Alternatvinklar

Alternatvinklar är ett par av vinklar som bildas på motsatt sida av en transversal när den skär två andra linjer. Det finns två typer: inre och yttre. I figuren nedan utgör de blå vinklarna yttre alternatvinklar, medan de gröna är inre alternatvinklar. Om linjerna L1 och L2 är parallella är alternatvinklarna lika stora.

De övre och undre paren av vinklar är dessutom vertikalvinklar, vilket innebär att alla fyra markerade vinklar är lika stora.

Exempel

Hur stora är de olika vinklarna?

fullscreen

Linjerna L1 och L2 är parallella. Bestäm storleken på vinklarna a, b, c och d med hjälp av de kända vinklarna i figuren.

Fyra räta linjer med kända och okända vinklar markerade vid skärningspunkterna
Visa Lösning expand_more

Vinkel a
Eftersom vinkel a befinner sig på motsatt sida om skärningspunkten mellan två linjer är den vertikalvinkel till vinkeln som är

Två räta linjer med kända och okända vinklar markerade vid skärningspunkten

Vertikalvinklar är alltid lika stora, så

Vinkel b
Vinkel b är sidovinkel till dels vinkeln som är och dels till vinkel a som också är . Summan av sidovinklar är alltid så därför är
Vinkel c
Vinkelparet c och a bildas båda av den vänstra linjen som skär L1 och L2. De är därför likbelägna vinklar, och eftersom L1 och L2 är parallella är dessa lika stora. Då måste
Fyra räta linjer med likbelägna vinklar markerade vid skärningspunkterna

Vinkel d
Slutligen ser vi att vinkel d och också bildas av en linje som skär linjerna L1 och L2, men dessa står på varsin sida om skärningslinjen. Därför är de alternatvinklar vid parallella linjer och därför lika stora. Vinkel d är då

Fyra räta linjer med kända vinklar markerade vid skärningspunkterna
Sammanfattningsvis är alltså
arrow_left
arrow_right
{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward
arrow_left arrow_right
close
Community