{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
 Cosinusekvationer
Metod

Lösa cosinusekvationer

I en cosinusekvation av typen
är man ute efter alla vinklar som har cosinusvärdet

Förutom de två vinklarna som visas i enhetscirkeln finns oändligt många fler eftersom cosinusfunktionen är periodisk. För att hitta alla lösningar ingår tre moment, men när man själv löser ekvationen bör alla tre göras i samma beräkningssteg.

1
Hitta en lösning med arccos
expand_more
Med funktionen arcuscosinus bestämmer man en vinkel som har cosinusvärdet
2
Lägg till spegellösningen med
expand_more
Arcuscosinus ger alltid en positiv vinkel, men som bilden visar bör det även finnas en negativ lösning. Den får man genom att spegla vinkeln i -axeln. För att ange båda lösningarna samtidigt används tecknet
3
Lägg till perioder
expand_more
Nu har man hittat de två lösningar som syns i enhetscirkeln. Men cosinus har perioden (eller ) så genom att lägga till ett varv hittar man ytterligare två:
På samma sätt kan man lägga till eller dra bort ett godtyckligt antal hela varv för att hitta fler lösningar. Ekvationens samtliga lösningar kan därför skrivas
där är ett heltal.
Ibland används begreppet lösningsmängd när man samlar ihop alla, eller en delmängd av, en ekvations lösningar. Det är särskilt användbart för trigonometriska ekvationer där man ofta vill beskriva oändligt många lösningar. I det här fallet är en lösningsmängd och en annan.
Laddar innehåll