{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Bestäm extrempunkterna till funktionen med hjälp av dess första- och andraderivata.

Vi börjar med att derivera funktionen med lämpliga deriveringsregler.

Vi sätter nu derivatan lika med och löser ekvationen. På detta sätt hittar vi -värdena till funktionens stationära punkter.

\SubstII{f'(x)}{0}

\OEk

Denna ekvation löser vi enklast med nollproduktmetoden eftersom vi kan bryta ut

\DIF

\BU{x^2}

\NPM

\SqrtEkv

\FRT

\SubEkv{6}

\DivEkv{(\text{-}1.6)}

Beräkna

Lösningarna till är alltså och , och det är för dessa -värden som funktionen har stationära punkter. Genom att bestämma andraderivatans tecken i punkterna kan vi nu avgöra deras karaktär, dvs. om de är maximi,- minimi- eller terrasspunkter. Vi deriverar därför funktionen ytterligare en gång.

Vi sätter nu in -värdena och för att bestämma andraderivatans tecken i dessa punkter.

\SubstII{x}{0}

\BP

\MF

När är alltså andraderivatan Vi räknar sedan ut andraderivatan för

\SubstII{x}{3.75}

Beräkna

Andraderivatan är alltså negativ när vilket innebär att det finns en maximimipunkt där. När är andraderivatan istället och då vet vi inte vilken sorts stationär punkt som finns där. För att avgöra det blir vi tvungna att göra en teckentabell runt Vi väljer ett -värde som är lägre än t.ex. och ett som ligger mellan och t.ex. och undersöker derivatans tecken för dem.

Tecken

Vi får att derivatan är positiv både till vänster och höger om den punkt där är och kan sammanställa detta i en teckentabell.

Ter.

Funktionen har alltså en terrasspunkt där är Eftersom terrasspunkter inte är extrempunkter kan vi bortse från denna när vi nu bestämmer koordinaterna för extrempunkterna vi har hittat. Vi tar alltså bara hänsyn till maximipunkten i För att bestämma -värdet sätter vi in i funktionen

\SubstII{x}{3.75}

Beräkna

\AvrDec{2}

Funktionens enda extrempunkt är alltså maximipunkten med koordinaterna