En kon består av en cirkelskiva och en böjd cirkelsektor som satts som mantel på cirkelskivan. I nedanstående figur är s mantelns längd och r är cirkelskivans radie.
Om man multiplicerar basytans area (πr2) med konens höjd h och delar med 3 får man volymen. Formeln för konens volym blir
V=3πr2h.
En kons volym är alltså 3 gånger mindre än en cylinder med samma basyta och höjd. Man kan bevisa formeln genom att skriva in en kon i en pyramid med samma höjd och kvadratisk basyta.