mathleaks.se mathleaks.se Startsida kapitel home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
Expandera meny menu_open Minimera
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open

Samband mellan sträcka hastighet och acceleration


Regel

Samband mellan sträcka, hastighet och acceleration

Om man bestämmer en primitiv funktion kan man få tillbaka funktionen genom att derivera. Ett konkret exempel på funktioner som hänger ihop på detta sätt är sträcka hastighet och acceleration

samband sträcka hastighet acceleration

Man kan utgå från en hastighetsfunktion för att illustrera principen. Om man deriverar får man en funktion som beskriver hur hastigheten förändras, vilket är samma sak som acceleration Om istället integreras kan det tolkas som arean under grafen på ett visst intervall, dvs. som summan av rektanglar med arean och är därför detsamma som en sträcka (eftersom ).

samband sträcka hastighet acceleration

Sambanden mellan de olika begreppen sammanfattas i figuren nedan.

samband sträcka hastighet acceleration

Regel

Sträcka, hastighet och acceleration


Regel

Samband mellan sträcka och hastighet

Sambanden mellan begreppen sträcka och hastighet, kan tolkas som: "hastigheten är derivatan av sträckan" och "sträckan är integralen av hastigheten". Man kan motivera detta med ett exempel. Om en bil kör med konstant hastighet m/s under sekunder kan man med -formeln beräkna sträckan som bilen färdats under denna tid: Samma samband kan man få genom att beräkna arean under grafen till från till sekunder.

Arean under grafen, motsvarar alltså sträckan som bilen kör. Och eftersom arean även kan tolkas som integralen av från till är sträckan lika med integralen: Generellt gäller att den primitiva funktionen till är sträckafunktionen alltså: I exemplet är en konstant funktion men sambandet gäller även då varierar.

Regel

Samband mellan hastighet och acceleration

Sambanden mellan begreppen hastighet och acceleration, kan tolkas som: "accelerationen är derivatan av hastigheten" och "hastigheten är integralen av accelerationen". Även detta kan motiveras med ett exempel. En bil som ökar sin hastighet med m/s varje sekund har accelerationen m/s Hastigheten kan även beskrivas med funktionen Derivatan blir då dvs. samma som accelerationen. Grafiskt representeras alltså accelerationen av grafens lutning, som är i alla punkter.


Generellt gäller att derivatan av är samma sak som accelerationen, och att är en primitiv funktionen till accelerationen: