Logga in
För att bevisa sambandet kan man utgå från två godtyckliga vinklar, u och v, i enhetscirkeln. Genom att dra vinkelstreck från origo till cirkeln hamnar man på punkter som kan kallas P och Q. Koordinaterna för dessa punkter anges med vinklarnas sinus- och cosinusvärden.
Avståndet, d, mellan punkterna P och Q kan bestämmas med hjälp av avståndsformeln.
Sätt in uttryck
Utveckla med andra kvadreringsregeln
Omarrangera termer
sin2(v)+cos2(v)=1
Addera termer
Tänk nu att man roterar hela triangeln så att hörnet i P hamnar på x-axeln. Medelpunktsvinkeln kommer inte att ändras och avståndet d är fortfarande samma. Låt P′ och Q′ beteckna de punkter där hörnen ligger efter rotationen.
Sätt in uttryck
Subtrahera term
Utveckla med andra kvadreringsregeln
Beräkna potens & produkt
Omarrangera termer
sin2(v)+cos2(v)=1
Addera termer
VL2=HL2
VL−2=HL−2
Omarrangera ekvation
Byt tecken
VL/2=HL/2