Kvadratroten ur ett positivt tal är alltid definierat. Men kan man dra kvadratroten ur negativa tal, exempelvis
−4?
Svaret på den frågan beror på vilka talmängder man använder, vilket ofta avgörs av hur långt man kommit i sina matematikstudier. Om man enbart letar bland de reella talen ska man hitta ett sådant tal a som gånger sig självt blir −4:
a⋅a=−4.
Man kan då testa olika kombinationer med positiva och negativa tvåor.
Endast 2⋅(−2) ger svaret −4, men 2 och −2 är två olika tal. Det finns alltså inget reellt tal som svar på uträkningen −4. Man brukar därför i början av sina matematikstudier säga att det inte går att dra kvadratroten ur negativa tal.
För att ändå kunna dra roten ur negativa tal har man infört den sk. imaginära enheteni, som definieras
i2=−1.
Med hjälp av den kan man skriva om −4 så att det innehåller i:
−4=4⋅(−1)=4i2.
När man nu ska dra kvadratroten ur −4 kan man alltså göra detta genom att skriva −4 som ovan och därefter utnyttja regler för potenser och rotuttryck∗:
−4=4i2=(2i)2=2i.
Svaret på frågan "Vad blir roten ur −4?" är alltså 2i, om man använder imaginära tal. Man kan alltså dra kvadratroten ur negativa tal, men då får man ett s.k. imaginärt, och inte ett reellt tal. Det är det man menar när man säger att t.ex. ekvationen x2=−25 saknar reella rötter.
∗Egentligen är a2=∣a∣, alltså absolutbeloppet av a i sista steget. Men det har utelämnats här för att få en övergripande förståelse för omskrivningen.