mathleaks.se mathleaks.se Startsida kapitel home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
Expandera meny menu_open Minimera
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open

Kvadratroten ur ett negativt tal


Förklaring

Kvadratroten ur ett negativt tal

Kvadratroten ur ett positivt tal är alltid definierat. Men kan man dra kvadratroten ur negativa tal, exempelvis Svaret på den frågan beror på vilka talmängder man använder, vilket ofta avgörs av hur långt man kommit i sina matematikstudier. Om man enbart letar bland de reella talen ska man hitta ett sådant tal som gånger sig självt blir : Man kan då testa olika kombinationer med positiva och negativa tvåor.

beräkningar

Endast ger svaret men och är två olika tal. Det finns alltså inget reellt tal som svar på uträkningen Man brukar därför i början av sina matematikstudier säga att det inte går att dra kvadratroten ur negativa tal.

Extra

Med imaginära tal

För att ändå kunna dra roten ur negativa tal har man infört den sk. imaginära enheten i, som definieras Med hjälp av den kan man skriva om så att det innehåller i: När man nu ska dra kvadratroten ur kan man alltså göra detta genom att skriva som ovan och därefter utnyttja regler för potenser och rotuttryck: Svaret på frågan "Vad blir roten ur ?" är alltså om man använder imaginära tal. Man kan alltså dra kvadratroten ur negativa tal, men då får man ett s.k. imaginärt, och inte ett reellt tal. Det är det man menar när man säger att t.ex. ekvationen saknar reella rötter.

Egentligen är alltså absolutbeloppet av i sista steget. Men det har utelämnats här för att få en övergripande förståelse för omskrivningen.