| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
x | x1 | = |
---|---|---|
−0.5 | −0.51 | −2 |
−0.25 | −0.251 | −4 |
−0.1 | −0.11 | −10 |
0.1 | 0.11 | 10 |
0.25 | 0.251 | 4 |
0.5 | 0.51 | 2 |
Därefter sätts punkterna in i ett koordinatsystem tillsammans med grafen till funktionen y=x1. De röda punkterna visar vad som händer om man sätter in mindre och mindre positiva tal, och de gröna punkterna visar vad som händer med små negativa tal.
Ju närmare 0 som x kommer, desto mer extrema blir funktionsvärdena. Kvoten visar sig gå mot oändligheten (∞) om man närmar sig från höger, men mot minus oändligheten (−∞) om man närmar sig noll från vänster. Men man kan inte få två olika svar på samma fråga (vilket värde går x1 mot då x=0?). Det är därför division med 0 inte är odefinierat. Vilka konsekvenser kan man få av att dividera med 0? Ett klassiskt exempel är följande förenkling som "bevisar" att 1=0.
Eftersom a−b=0 dividerades båda led med 0 i andra steget och gav en likhet som inte gäller. Det var för att man bröt mot regeln om nolldivision.