Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Förskjutningar i x-led

Regel

Förskjutningar i xx-led

För att förskjuta grafen i xx-led lägger man till en konstant CC till xx-värdet. f(x)=sin(x+C) f(x) = \sin(x + C) Om konstanten CC är positiv förskjuts kurvan åt vänster med detta värde och om CC är negativ sker förskjutningen åt höger.

Det är viktigt att komma ihåg att CC ska adderas direkt till x,x, vilket innebär att man måste lägga till en parentes om det finns en konstant framför x.x. Till exempel kan en sinusvåg med perioden π\pi och förskjutningen 77 åt höger uttryckas som f(x)=sin(2(x7)). f(x) = \sin \left( 2(x - 7) \right).

För att läsa av en förskjutning måste man först hitta en punkt på grafen som motsvarar origo för en oförskjuten graf. För cosinuskurvor innebär detta maximipunkter medan för sinuskurvor är det skärningspunkter med jämviktslinjen där kurvan har positiv lutning, även kallade inflexionspunkter. Dessa inflexionspunkter kan alternativt bestämmas genom att beräkna medelvärdet av xx-värdena för den omgivande dalen och toppen. xinflexion=xdal+xtopp2 x_\text{inflexion} = \dfrac{x_\text{dal} + x_\text{topp}}{2}

För periodiska funktioner finns det ett oändligt antal sådana punkter, men oftast väljer man den som ligger närmast origo. För att bestämma förskjutningen mäter man sedan avståndet i xx-led från punkten till origo. Konstanten CC motsvarar detta avstånd om punkten ligger till vänster om origo och det negativa värdet av avståndet om punkten ligger till höger om origo.

{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward