Metod

Uppskatta derivata grafiskt

Ett sätt att uppskatta derivatan i en graf är att rita en tangent genom den punkt man är intresserad av och bestämma linjens lutning. Denna metod kan exempelvis användas för att uppskatta värdet av f(-2)f'(\text{-}2) med hjälp av figuren.

1

Rita en tangent i punkten och bestäm dess lutning

Börja med att rita en tangent och bestäm dess lutning i tangeringspunkten. I exemplet är det f(-2)f'(\text{-}2) som ska bestämmas, dvs. derivatan där x=-2.x=\text{-}2.


Här används tangeringspunkten (-2,-3)(\text{-}2, \text{-}3) och punkten (-6,3)(\text{-}6, 3) för att bestämma tangentens lutning till k=3(-3)-6(-2)=-1.5. k=\dfrac{3-(\text{-}3)}{\text{-}6 -(\text{-}2)}= \text{-}1.5.

2

Tolka lutningen som derivata

Eftersom derivatan är lutningen i en viss punkt, och en tangents lutning anger just detta är f(-2)-1.5. f'(\text{-}2) \approx \text{-}1.5.

{{ 'ml-template-article-upsell1' | message }}

{{ 'ml-template-article-upsell2' | message }}

{{ 'ml-template-article-upsell3' | message }}