mathleaks.se mathleaks.se Startsida kapitel home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
Expandera meny menu_open Minimera
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open

Konvex


Begrepp

Konvex

En kurva är konvex om dess lutning ökar när man går mot större -värden. Konvexa kurvor buktar därför alltid nedåt. För att identifiera en konvex kurva kan man dra en sekant mellan två godtyckliga punkter på kurvan. Är kurvan konvex kommer den del av sekanten som ligger mellan skärningspunkterna alltid befinna sig över eller på kurvan.

Ett annat sätt att avgöra om en kurva är konvex är att undersöka andraderivatan, som alltid är positiv i områden där funktionen är konvex. Motsatsen till en konvex kurva är en konkav kurva, som istället buktar uppåt, och för grafer som övergår från att vara konvexa till att vara konkava eller vice versa kallas punkten där detta sker för inflexionspunkt.