Logga in
| 8 sidor teori |
| 27 Uppgifter - Nivå 1 - 3 |
| Varje lektion är menad motsvara 1-2 lektioner i klassrummet. |
En andel beskriver hur mycket det finns av något i förhållande till det totala. Det är alltid ett jämförelsetal, som hälften
eller 50%
, och inte ett absolut värde som 25 kr
eller 42 kg
. En andel kan t.ex. anges som ett bråk, ett decimaltal eller i procent.
Andel | Bråk | Decimaltal | Procent |
---|---|---|---|
En hundradel | 1001 | 0,01 | 1% |
Tre åttondelar | 83 | 0,375 | 37,5% |
Två femtedelar | 52 | 0,4 | 40% |
Tre fjärdedelar | 43 | 0,75 | 75% |
För att beräkna hur stor andel som en del (t.ex. 15 st. tjejer) utgör av det hela (exempelvis en klass på 30 elever), beräknar man kvoten enligt andelsformeln.
Två storheter är proportionella om de förändras i samma takt. Det betyder att om den ena storheten ökar eller minskar, så gör den andra det också — med en konstant faktor.
Om det kostar 40 kronor för 1 timmes cykelhyra, kostar det 80 kronor för 2 timmar och 120 kronor för 3 timmar. Kostnaden per timme är alltid 40 kronor. Eftersom priset ökar linjärt med tiden, är kostnaden proportionell mot hyrestiden. I en graf representeras proportionalitet av en rät linje som går genom origo. Om hyrestiden markeras på x-axeln och kostnaden på y-axeln, bildar punkterna en rät linje från (0,0).
Proportionalitet innebär också att förhållandet mellan de två storheterna alltid är konstant.
Använd andelsformeln.
Det hela. Vi använder andelsformeln för att beräkna andelen. Vi förkortar bråket så långt som möjligt och kan börja med att förkorta med 2 eftersom både täljare och nämnare är jämna tal. Du jobbar alltså 41 av veckan.
Använd andelsformeln.
Andelen=0,8 och Det hela=2
VL⋅2=HL⋅2
Omarrangera ekvation
Använd andelsformeln.
Andelen=0,1 och Delen=7
VL⋅Det hela=HL⋅Det hela
VL⋅10=HL⋅10
Bönder blandar ofta gödsel med vatten i förhållande 100:10, vilket innebär att 100 gram gödsel blandas med 10 liter vatten.
Detta betyder att 1 liter vatten används per 10 gram gödsel. Beräkna nu förhållandena i Elias och Julias blandningar för att kontrollera om de följer samma proportion.
Eftersom både Elias och Julia har samma förhållandevärde på 12,5g/L, är deras blandningar proportionella mot varandra. Däremot skiljer sig deras förhållande från böndernas, vilket innebär att deras blandningar inte är proportionella mot den som vanligtvis används av bönder.
Detta innebär att Elias och Julia behöver 40 liter vatten för att bibehålla samma proportion.