Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Antar en funktion alltid ett största/minsta värde

Förklaring

Antar en funktion alltid ett största/minsta värde?

För en funktion på ett slutet intervall finns det alltid ett globalt maximi- och minimivärde. Men antar alla funktioner ett största och ett minsta värde? För att besvara den frågan kan man titta på två fall då en funktion inte är definierad på ett slutet intervall.

Förklaring

Öppet intervall

Funktionen nedan har fyra extrempunkter på intervallet -4x3\text{-}4 \leq x \leq 3: ändpunkterna och två stationära punkter. Det minsta värdet, -32,\text{-}32, och det största värdet, 45,45, antas båda i ändpunkterna.

Men vad hade hänt om man istället hade letat på det öppna intervallet -4<x<3?\text{-}4 \lt x \lt 3? Funktionen hade då inte antagit yy-värdena -32\text{-}32 och 4545 eftersom ändpunkterna inte ingår i definitionsmängden.

Funktionen antar t.ex. värdet 44.9,44.9, men det går alltid att hitta ett större värde genom att lägga till en extra decimal (44.99,44.999,44.9999(44.99, \, 44.999, \, 44.9999 osv.). På motsvarande sätt går det alltid att hitta mindre och mindre värden nära -32.\text{-}32. Därför saknar funktionen största och minsta värde.

Förklaring

Inget intervall

Funktionsvärdena för en del funktioner som inte är begränsade av intervall kommer att fortsätta mot positiva eller negativa oändligheten. Exempelvis antar andragradsfunktioner antingen ett maximi- eller minimivärde, men inte både och, eftersom de fortsätter oändligt uppåt eller nedåt på båda sidor om extrempunkten. Eftersom oändligheten inte är ett tal säger man att de saknar största eller minsta värde.

Vissa andra funktioner, t.ex. tredjegradspolynom, går mot både positiva och negativa oändligheten och saknar både största och minsta värde. Sammanfattningsvis finns det alltså flera fall då funktioner aldrig antar ett största och/eller minsta värde.