Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Vektorer

En vektor beskriver en storhet som har både storlek och riktning. Storheter som kan beskrivas med vektorer är t.ex. hastighet, acceleration och kraft. Den vanligaste notationen för vektorer är att sätta en pil eller ett streck över en bokstav, exempelvis vellervˉ. \vec{v} \quad \text{eller} \quad \bar{v}. Grafiskt brukar en vektor representeras av en pil, där pilens längd motsvarar vektorns storlek och pilhuvudet visar riktningen. Drar man en vektor mellan två namngivna punkter, t.ex. startpunkten A och slutpunkten B, brukar man namnge den AB\overrightarrow{AB}, och om den riktas åt andra hållet får den namnet BA.\overrightarrow{BA}.

Begrepp

Koordinatform för vektor

Vektorer brukar beskrivas med koordinater, där xx- och yy-koordinaterna anger förändringen i respektive riktning. För en utritad vektor kan man bestämma koordinaterna genom att beräkna skillnaden i xx- och yy-led mellan start- och slutpunkten.

Till skillnad från punkter på koordinatform, som anger en specifik position i koordinatsystemet, anger vektorer förändring, och är alltså inte bundna till en viss position.
Uppgift

Skriv vektorerna u\vec{u} och v\vec{v} på koordinatform.

Lösning

För att skriva vektorerna på koordinatform mäter vi förändringen i xx- och yy-led mellan start- och slutpunkterna. För v\vec{v} noterar vi att slutpunkten finns till vänster om startpunkten, vilket ger en negativ förändring i xx-led.

Exempel

Vektor u\vec{u}

Skillnaden är 44 längdenheter i xx-led och 2 i yy-led. Det innebär att koordinatformen för u\vec{u} är (4,2).(4,2).

Exempel

Vektor v\vec{v}

Skillnaden i xx-led är -3\text{-} 3 längdenheter och 11 i yy-led, så koordinatformen för v\vec{v} är (-3,1).(\text{-} 3,1).

info Visa lösning Visa lösning
Regel

Addera vektorer

Eftersom vektorer har både storlek och riktning måste man ta hänsyn till båda dessa egenskaper när vektorer adderas. Vektorerna u=(4,0)\vec{u}=(4,0) och v=(5,0)\vec{v}=(5,0) har samma riktning, så r=u+v\vec{r}=\vec{u}+\vec{v} kommer också få samma riktning, och vara lika lång som deras sammanlagda längd.

Begrepp

Resultant

Vektorn som bildas när man adderar eller subtraherar vektorer kallas resultant. Grafiskt får man resultanten genom att lägga vektorerna "på rad", alltså flytta dem så att där en vektor slutar börjar nästa. Man ritar sedan en ny vektor från den första vektorns startpunkt till sista vektorns slutpunkt. I rutnätet har v,u\vec{v}, \, \vec{u} och z\vec{z} adderats för att bilda resultanten r.\vec{r}.

Byt ordning

Det spelar ingen roll i vilken ordning man lägger vektorerna. När man lägger dem efter varandra kommer de alltid att leda fram till samma slutpunkt, vilket ger samma resultant.


{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward