{{ option.icon }} {{ option.label }} arrow_right
arrow_left {{ state.menu.current.label }}
{{ option.icon }} {{ option.label }} arrow_right
arrow_left {{ state.menu.current.current.label }}
{{ option.icon }} {{ option.label }}
arrow_left {{ state.menu.current.current.current.label }}
{{ option.icon }} {{ option.label }}
Mathleaks
Använd offline
Expandera meny menu_open
article Artikel
menu_book Lösningar till böcker
school eKurser
question_answer Community
description Uppgiftsblad
calculate Math Solver
arrow_back arrow_forward

Förklaring

Hur ska man tolka den andra vinkeln i sinussatsen?

När man använder sinussatsen för att bestämma en vinkel i en triangel måste man komma ihåg att det finns två vinklar mellan och som ger samma sinusvärde. Detta betyder att sinussatsen kan leda fram till två olika trianglar. Exempelvis kan man använda den för att bestämma vinkeln B i triangeln nedan.
Ställer man upp satsen och löser ut B med arcussinus får man en första vinkel, B1.
Men eftersom en vinkel v och har samma sinusvärde finns även en andra vinkel, B2.
Detta kan tolkas som att det finns två olika sätt att rita en triangel med vinkeln och sidlängderna 2 och 1.5. En med spetsig vinkel, och en med trubbig vinkel,

Det går alltid att skapa en triangel som innehåller den spetsiga vinkeln B1, men det är inte alltid möjligt att bilda en med den trubbiga vinkeln B2.

Ibland blir B2 så stor att den tillsammans med vinkeln A blir större än och då går det inte bilda en triangel eftersom alla trianglar måste ha vinkelsumman Man kan visa att detta sker om vinkeln B1 är mindre än vinkeln A.

{{ 'ml-article-textbook-solutions-heading' | message }}

{{ 'ml-article-textbook-solutions-description' | message }}

{{ 'ml-article-textbook-solutions-expert-solutions' | message }}

{{ 'ml-article-textbook-solutions-math-solver-scanner' | message }}

{{ 'ml-article-textbook-solutions-answers-hints-steps' | message }}

{{ 'ml-article-ecourses-heading' | message }}

{{ 'ml-article-ecourses-description' | message }}

{{ 'ml-article-ecourses-interactive' | message }}

{{ 'ml-article-ecourses-chapter-tests' | message }}

{{ 'ml-article-ecourses-exercise-levels' | message }}

{{ 'ml-article-ecourses-rank-stats' | message }}

{{ 'ml-article-ecourses-video-lessons' | message }}

{{ 'ml-article-ecourses-course-theory' | message }}

{{ 'ml-article-ecourses-join-classroom' | message }}

{{ 'ml-article-ecourses-graphing-calculator' | message }}

{{ 'ml-article-ecourses-quiz-games' | message }}

{{ 'ml-article-ecourses-study-together' | message }}

{{ 'ml-article-community-heading' | message }}

{{ 'ml-article-community-description' | message }}

{{ 'ml-article-community-create-and-share-channels' | message }}

{{ 'ml-article-community-share-content-and-challenge' | message }}

{{ 'ml-article-community-cooperate-with-friends' | message }}

{{ 'ml-article-worksheets-heading' | message }}

{{ 'ml-article-worksheets-description' | message }}

{{ 'ml-article-worksheets-course1' | message }}

{{ 'ml-article-worksheets-course2' | message }}

{{ 'ml-article-worksheets-course3' | message }}

{{ 'ml-article-worksheets-course4' | message }}

{{ 'ml-article-math-solver-heading' | message }}

{{ 'ml-article-math-solver-description' | message }}

{{ 'ml-article-math-solver-photo-scan-solve' | message }}

{{ 'ml-article-math-solver-step-by-step' | message }}

{{ 'ml-article-math-solver-graph-math-problem' | message }}

close
Community