Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Varför kan f(x) ha oändligt många primitiva funktioner


Förklaring

Varför kan f(x)f(x) ha oändligt många primitiva funktioner?

Funktionen F(x)=x3F(x) = x^3 är en primitiv funktion till f(x)=3x2,f(x)=3x^2, eftersom derivatan till x3x^3 är 3x2.3x^2. Men kan 3x23x^2 ha fler primitiva funktioner? Ja, eftersom det finns flera funktioner som har derivatan 3x2,3x^2, exempelvis G(x)=x3+5 och H(x)=x33.8. G(x) = x^3 + 5 \quad \text{ och } \quad H(x) = x^3 - 3.8. Det betyder att funktionen 3x23x^2 har minst tre primitiva funktioner: x3,x^3, x3+5x^3+5 och x33.8.x^3 - 3.8. Det enda som skiljer dem är en konstant. Eftersom konstanten försvinner vid deriveringen spelar det ingen roll vilket värde den har. Generellt kan en primitiv funktion till 3x23x^2 skrivas F(x)=x3+C, F(x)=x^3 + C, där CC är en godtycklig konstant. F(x)=x3+CF(x)=x^3 + C representerar då alla primitiva funktioner till f(x)=3x2.f(x)=3x^2. Eftersom det finns oändligt många värden som CC kan anta innebär detta också att det finns oändligt många primitiva funktioner till f(x).f(x).

{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward