{{ option.label }} add
menu_book {{ printedBook.name}}
arrow_left {{ state.menu.current.label }}
{{ option.icon }} {{ option.label }} arrow_right
arrow_left {{ state.menu.current.current.label }}
{{ option.icon }} {{ option.label }}
arrow_left {{ state.menu.current.current.current.label }}
{{ option.icon }} {{ option.label }}
Mathleaks
Använd offline
Expandera meny menu_open

Geometrisk tolkning av kvadratkomplettering *Why*

tune
{{ topic.label }}
{{ result.displayTitle }}
{{ result.subject.displayTitle }}
navigate_next

Förklaring

Geometrisk tolkning av kvadratkomplettering

Kvadratkomplettering är en metod för att lösa generella andragradsekvationer. Steget då kvadraten läggs till kan motiveras med ett geometriskt resonemang. I figuren nedan är den gröna arean totalt
Om arean är ae. representeras sambandet mellan den okända sidan och arean av ekvationen
För att lösa den med kvadratkomplettering lägger man till den blå kvadraten med sidan i övre högra hörnet. Den bildar tillsammans med det gröna området en hel kvadrat—man kompletterar kvadraten.
Den totala arean ökar med så båda led ökar med :
Men det är ju nu en kvadrat med sidan Kvadratens area kan också beskrivas med vilket ger en ekvation man löser genom att dra kvadratroten ur båda led och sedan lösa ut :
close
Community (beta)