Expandera meny menu_open Minimera Gå till startsidan home Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu
{{ courseTrack.displayTitle }} {{ printedBook.courseTrack.name }} {{ printedBook.name }}
{{ statistics.percent }}% Logga in för att se statistik
search Använd offline Verktyg apps
Digitala verktyg Grafräknare Geometri 3D Grafritare Geogebra Classic Mathleaks Kalkylator Kodfönster
Kurs & Bok Jämför mattebok Studieläge Avsluta studieläge Skriv ut kurs
Handledning Videohandledningar Formelsamling

Videohandledningar

Hur fungerar Mathleaks

Mathleaks Läromedel

Hur fungerar Mathleaks

play_circle_outline
Studera med en mattebok

Mathleaks Läromedel

Hur studerar man med en mattebok

play_circle_outline

Mathleaks Läromedel

Lösningarna finns i appen

play_circle_outline
Verktyg för elever & lärare

Mathleaks Läromedel

Dela statistik med lärare

play_circle_outline

Mathleaks Läromedel

Hur skapar man klasser

play_circle_outline

Mathleaks Läromedel

Hur skriver man ut kursmaterial?

play_circle_outline

Formelsamling

Formelsamlingar för mattekurser looks_one

Kurs 1

looks_two

Kurs 2

looks_3

Kurs 3

looks_4

Kurs 4

looks_5

Kurs 5

Logga in account_circle menu_open

Direkt och indirekt bevis

Begrepp

Direkt och indirekt bevis

Många bevis går ut på att visa att ett påstående, P, leder till ett annat påstående, Q, dvs. att  Q. \text{P }\Rightarrow\text{ Q.} Beroende på vad påståendena är kan det finnas olika sätt att bevisa en sådan implikation, och den viktiga skillnaden mellan metoderna är hur man börjar beviset. Det mest intuitiva är antagligen att utga˚ fra˚n att P a¨r sant och visa att Q fo¨ljer av det. \text{utgå från att P är sant och visa att Q följer av det.} Detta kallas för ett direkt bevis. Ibland kan det dock vara lättare att bevisa att P \Rightarrow Q om man skriver om implikationen som en annan, matematiskt likvärdig, implikation och visar den istället. Exempelvis kan man negera både P och Q och byta plats på dem:    P  Qa¨r ekvivalent med¬¬P.\begin{aligned} &\quad\ \ \ \text{P }\Rightarrow\text{ Q}\\ &\text{är ekvivalent med}\\ &\quad \neg\text{Q }\Rightarrow\neg\text{P.} \end{aligned} Man kan alltså bevisa att P leder till Q även genom att anta att ¬a¨r sant och visa att ¬P fo¨ljer av det. \text{anta att }\neg\text{Q är sant och visa att }\neg\text{P följer av det.} Detta kallas för ett indirekt bevis.

{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward