Du måste ha JavaScript påslaget för att använda den här webbsidan.
close
{{ option.label }}
add
menu_book
{{ printedBook.name}}
arrow_left
{{ state.menu.current.label }}
{{ option.icon }}
{{ option.label }}
arrow_right
arrow_left
{{ state.menu.current.current.label }}
{{ option.icon }}
{{ option.label }}
arrow_left
{{ state.menu.current.current.current.label }}
{{ option.icon }}
{{ option.label }}
{{ "ml-topbar-info-01" | message }}
{{ "ml-topbar-info-02" | message }}
{{ "ml-topbar-info-03" | message }}
Mathleaks
Start
expand_more
{{ option.icon }}
{{ option.label }}
menu_book
{{ printedBook.name}}
arrow_left
{{ option.label }}
{{ suboption.icon }}
{{ suboption.label }}
arrow_left
{{ submenu.label }}
{{ suboption.icon }}
{{ suboption.label }}
eKurser
expand_more
{{ option.icon }}
{{ option.label }}
menu_book
{{ printedBook.name}}
arrow_left
{{ option.label }}
{{ suboption.icon }}
{{ suboption.label }}
arrow_left
{{ submenu.label }}
{{ suboption.icon }}
{{ suboption.label }}
Lösningar till böcker
expand_more
{{ option.icon }}
{{ option.label }}
menu_book
{{ printedBook.name}}
arrow_left
{{ option.label }}
{{ suboption.icon }}
{{ suboption.label }}
arrow_left
{{ submenu.label }}
{{ suboption.icon }}
{{ suboption.label }}
Sök
expand_more
{{ option.icon }}
{{ option.label }}
menu_book
{{ printedBook.name}}
arrow_left
{{ option.label }}
{{ suboption.icon }}
{{ suboption.label }}
arrow_left
{{ submenu.label }}
{{ suboption.icon }}
{{ suboption.label }}
Premium
expand_more
{{ option.icon }}
{{ option.label }}
menu_book
{{ printedBook.name}}
arrow_left
{{ option.label }}
{{ suboption.icon }}
{{ suboption.label }}
arrow_left
{{ submenu.label }}
{{ suboption.icon }}
{{ suboption.label }}
Använd offline
{{ 'ml-menu-item-logged-out' | message }}
Expandera meny
menu_open
$\text{-} (a,b)
tune
search
cancel
{{ topic.label }}
{{ result.displayTitle }}
{{ 'ml-article-content-copy-link-tooltip' | message }}
link
{{ result.subject.displayTitle }}
navigate_next
{{ 'math-wiki-no-results' | message }}
{{ 'math-wiki-keyword-three-characters' | message }}
Teori
$\text{-} (a,b)
(\text{-} a, \text{-} b)
=
S
t
a
˚
r
d
e
t
e
t
t
m
i
n
u
s
t
e
c
k
e
n
f
r
a
m
f
o
¨
r
[
[
K
o
o
r
d
i
n
a
t
f
o
r
m
f
o
¨
r
v
e
k
t
o
r
∗
W
o
r
d
l
i
s
t
∗
∣
k
o
o
r
d
i
n
a
t
f
o
r
m
e
n
]
]
f
o
¨
r
e
n
[
[
V
e
k
t
o
r
∗
W
o
r
d
l
i
s
t
∗
∣
v
e
k
t
o
r
]
]
k
a
n
m
a
n
s
k
r
i
v
a
o
m
d
e
t
t
a
g
e
n
o
m
a
t
t
s
a
¨
t
t
a
i
n
m
i
n
u
s
t
e
c
k
n
e
t
f
r
a
m
f
o
¨
r
b
a
˚
d
e
x
−
o
c
h
y$-koordinaten.
-
(
4
,
6
)
=
(
-
4
,
-
6
)
.
close
Community (beta)
rate_review
Threads
{{ r.getUnreadNotificationCount('total') }}
expand_more
Kanaler
add_circle_outline
add_circle
Skapa nytt rum
explore
Utforska publika rum
{{ r.avatar.letter }}
{{ r.name }}
{{ r.getUnreadNotificationCount('total') }}
more_horiz
share
Dela rum
settings
Inställningar
logout
Lämna
notifications
notifications_off
expand_more
Direktmeddelanden
add_circle_outline
{{ u.avatar.letter }}
{{ u.presence }}
{{ u.displayName }}
(you)
{{ r.getUnreadNotificationCount('total') }}
more_horiz
settings
Inställningar
logout
Lämna
notifications
notifications_off
+
Lägg till