En parallelltransversal i en triangel delar två av sidorna i delsträckor. I triangeln har parallelltransversalen DE ritats in och bildat delsträckorna AD, CD, CE och BE.
Enligt transversalsatsen är förhållandet mellan delsträckorna på ena sidan samma som för delsträckorna på den andra sidan.
ADCD=BECE
Satsen kan bevisas med hjälp av topptriangelsatsen.