Korrelation och kausalitet

{{ 'ml-heading-theory' | message }}

Begrepp

Korrelation

Om det finns ett samband mellan två eller fler faktorer säger man att de korrelerar. Det finns t.ex. en korrelation mellan längd och ålder (fram till att man slutar växa): ju äldre man är, desto längre är man. Detta kallas för positiv korrelation och innebär att om en variabel ökar så ökar även den andra. Om den ena variabeln däremot minskar när den andra ökar kallas det negativ korrelation.

Tre diagram som visar positiv, negativ och ingen korrelation

Ju mer datapunkterna ser ut att följa en viss trend, desto mer korrelerade säger man att de är. Om de ligger nästan exakt på en linje säger man att variablerna är starkt korrelerade medan om de är mer utspridda är de svagt korrelerade.

Tre diagram som visar stark, svag och ingen korrelation
Korrelation innebär inte nödvändigtvis att det finns ett orsakssamband (kausalitet). De kan båda vara påverkade av en tredje faktor eller kan sambandet bero på slumpen.
Begrepp

Korrelationskoefficient

Korrelationskoefficienten, r,r, är ett mått på hur stark en korrelation är. Den varierar mellan -1\text{-}1 och 1.1. Värden nära -1\text{-}1 innebär att korrelationen är stark och negativ, medan en korrelation nära 11 är stark och positiv. Har den värdet 0 finns det ingen korrelation.
Uppgift

I koordinatsystemen visas spridningsdiagram mellan två parametrar.

Fyra diagram med olika kausalitetssamband

Para ihop lämplig korrelationskoefficient, r,r, med rätt diagram:01-0.85-1. \sim 0 \quad \sim 1 \quad \sim \text{-} 0.85 \quad \sim \text{-} 1.

Lösning

Vi tittar på diagrammen ett i taget.

A
Diagram AA visar en positiv korrelation, eftersom lutningen är positiv. Det är även en stark korrelation, eftersom punkterna ligger nära en tänkt rät linje. Därför är det korrelationskoefficienten r1r \approx 1 som passar bäst.

B
Spridningsdiagram BB verkar inte ha någon positiv eller negativ trend. Därför är korrelationskoefficienten ungefär 0.

C och D
Både CC och DD visar på en negativ korrelation, eftersom det är en negativ lutning. Diagram DD har en starkare korrelation än C,C, eftersom det visar på en tydligare trend. Därför hör CC ihop med r-0.85r \approx \text{-}0.85 och DD med r-1.r \approx \text{-}1.

Diagram AA BB CC DD
rr 185\sim 1 \phantom{85} 085\sim 0 \phantom{85} -0.85\sim \text{-}0.85 -185\sim \text{-}1 \phantom{85}
Visa lösning Visa lösning
Begrepp

Kausalitet

Kausalitet är ett orsakssamband mellan två korrelerade faktorer där den ena direkt påverkar den andra.

  • Kausalitet finns: Ett exempel på en korrelation där det också finns ett orsakssamband är längd och ålder. Ju äldre man är, desto längre är man, i alla fall tills man slutar växa.
Kausalitet mellan ålder och längd
  • Ingen kausalitet: På vintern går både antalet villabränder och bilolyckor upp – de är korrelerade. Däremot kan man inte säga att villabränder får bilar att krocka. Anledningen är att vintern är en gemensam faktor som orsakar både halare väglag och att fler ljus tänds, vilket leder till fler eldsvådor. Det finns en korrelation mellan villabränder och bilolyckor, men ingen kausalitet.
Skillnad mellan korrelation och kausalitet
Uppgift

Anta att det finns en korrelation mellan följande parametrar.

  • Skostorlek och antal länder man besökt
  • Vikt och klädstorlek
  • Temperatur och antal människor på stranden
  • Mattebetyg och antal engelskglosor man kan

Diskutera om det även finns en kausalitet.

Lösning

Vi går igenom fallen ett i taget.

Skostorlek och antal länder man besökt
Personer med stor skostorlek har inte nödvändigtvis besökt fler länder. En större skostorlek handlar antagligen snarare om att man är äldre och därmed hunnit med fler utlandsresor. Det råder alltså ingen kausalitet mellan skostorlek och hur många länder man besökt.

Vikt och klädstorlek
Människor som väger mer har generellt en större kropp och behöver därför köpa större klädstorlekar. Det råder alltså kausalitet mellan vikt och klädstorlek.

Temperatur och antal människor på stranden
Det är nog fler som blir badsugna när det är varmt. Det råder alltså kausalitet mellan dagstemperatur och antal människor på stranden.

Mattebetyg och antal engelskglosor man kan
Elever som kan många glosor i engelska är sannolikt ambitiösa och pluggar även mycket matematik. Men enbart kunskaper i engelska gör inte att man blir bättre i matematik. Det råder alltså ingen kausalitet mellan mattebetyg och antalet engelska glosor man kan.

Visa lösning Visa lösning

Uppgifter

{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-btn-focusmode-tooltip' | message }} settings_overscan
Test
{{ 'mldesktop-selftest-notests' | message }} {{ article.displayTitle }}!
{{ tests.error }}

{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}

keyboard_backspace
{{ section.title }} keyboard_backspace {{ 'ml-btn-previous' | message }} {{ 'ml-btn-previous-exercise' | message }} {{ 'ml-btn-next-exercise' | message }} keyboard_backspace {{ 'ml-btn-next-exercise' | message }}