Välj kapitel {{ courseTrack.signature }} Välj kurs

{{ article.chapterName }}

{{ article.displayTitle }}

Teori

Trigonometri handlar om sambanden mellan en triangels vinklar och sidlängder. Dessa samband kan användas för att beräkna okända vinklar med hjälp av sidlängderna eller vice versa.

Trigonometriska funktioner

För att koppla samman vinklar med sidor i rätvinkliga trianglar använder man trigonometriska funktioner. Dessa beror på en vinkel i triangeln och anger ett förhållande mellan längderna på två av triangelns sidor, antingen mellan de två kateterna eller mellan en katet och hypotenusan. Vilken katet som är motstående respektive närliggande beror på vilken vinkel man utgår från.

Byt vinkel

Med hjälp av kateterna och hypotenusan kan man för en vinkel vv definiera olika trigonometriska funktioner. Tre av de mest använda är sinus, cosinus och tangens, vilka definieras på följande sätt.

sin(v)=Motstende kateta˚Hypotenusa\sin(v)=\dfrac{\text{Motstående katet}}{\text{Hypotenusa}}

cos(v)=Nrliggande kateta¨Hypotenusa\cos{(v)}=\dfrac{\text{Närliggande katet}}{\text{Hypotenusa}}

tan(v)=Motstende kateta˚Nrliggande kateta¨\tan(v)=\dfrac{\text{Motstående katet}}{\text{Närliggande katet}}

De trigonometriska funktionerna säger inte något om de individuella sidlängderna utan enbart något om förhållandet mellan dem. Om man exempelvis vet att sinusvärdet för en vinkel är 0.50.5 betyder det att den motstående sidan är hälften så lång som hypotenusan. Om man känner till en av sidorna och någon av de spetsiga vinklarna i triangeln kan man använda dem för att bestämma resten av sidorna.

Exempel

Bestäm sinus, cosinus och tangens för vinkeln

Digitala verktyg

Tan, sin och cos på räknare

Exempel

Bestäm sida utifrån vinkel

Uppgifter