{{ article.displayTitle }}

{{ 'ml-heading-theory' | message }}

Triangelsatserna är det gemensamma namnet för areasatsen, sinussatsen och cosinussatsen. Sinus- och cosinussatsen anger samband mellan vinklar och sidor i en godtycklig triangel, medan areasatsen även innefattar triangelns area.

Teori

Areasatsen

Enligt areasatsen är en triangels area lika med produkten av två sidor och sinusvärdet för den mellanliggande vinkeln, delat med 2.2.

Area=absin(C)2\text{Area}=\dfrac{ab\sin(C)}{2}

Teori

Sinussatsen

I en triangel är kvoten mellan sinusvärdet för en vinkel och vinkelns motstående sida konstant. Detta kallas för sinussatsen.

sin(A)a=sin(B)b=sin(C)c\dfrac{\sin(A)}{a}=\dfrac{\sin(B)}{b}=\dfrac{\sin(C)}{c}

Teori

Cosinussatsen

Cosinussatsen anger ett samband mellan triangelns samtliga sidor och en av vinklarna.

a2=b2+c22bccos(A)a^2=b^2+c^2-2bc \cos(A)

Uppgift Visa lösning Visa lösning
Teori

Triangulering

Triangulering är en metod för att bestämma avstånd som är svåra eller omöjliga att mäta direkt, t.ex. för att de är väldigt stora.

Metoden går ut på att mäta vinklar och sidor som är enkla att bestämma och sedan använda trigonometri, exempelvis sinus- eller cosinussatsen, för att beräkna något sökt avstånd. Triangulering används t.ex. för att mäta höjder på byggnader, avstånd till himlakroppar och för att fastställa GPS-positioner.
Uppgift Visa lösning Visa lösning

{{ 'ml-heading-exercises' | message }}