Välj kapitel {{ courseTrack.signature }} Välj kurs

{{ article.chapterName }}

{{ article.displayTitle }}

Teori

Oberoende händelser

Oberoende händelser är händelser vars sannolikheter inte beror på varandra. Om man exempelvis kastar en tärning och sedan drar ett kort ur en kortlek beror inte vilket kort man får på resultatet av tärningskastet. Därför är dessa händelser oberoende.

Beroende händelser

En beroende händelse är en händelse vars sannolikhet beror på en eller flera andra händelser. Detta visas enklast med ett exempel. Antag att man har en skål med två kulor: en röd och en lila.

Bowl with red and purple marble.svg

Om man slumpmässigt drar en av kulorna från skålen får man antingen den lila eller den röda kulan. Om man drar en kula till, vad blir sannolikheten att den är lila? Det beror ju på vilken färg den första kulan hade. Drog man lila första gången finns det ingen lila kula kvar, utan bara den röda. Sannolikheten att dra en lila andra gången är då 00: P(lila, om 1:a lila)=0. P(\text{lila, om 1:a lila})=0.

Om man däremot tog röd första gången finns nu endast den lila kulan kvar i skålen. Sannolikheten är därför 1 att dra den lila kulan: P (lila, om 1:a röd) = 1. Sannolikheten för den andra händelsen, att dra lila kula, är alltså beroende av den första.

Multiplikation av sannolikheter

När man gör flera olika slumpförsök, eller när ett upprepas, får man en kombination av händelser. Sannolikheten för att både händelse AA och B,B, från olika slumpförsök, inträffar får man genom att multiplicera deras individuella sannolikheter.

Regel

P(A och B)=P(A)P(B)P(A \text{ och } B) = P(A) \cdot P(B)

Exempel

Vad är sannolikheten för två beroende händelser?

Addition av sannolikheter

För två händelser, AA och BB, som inte kan inträffa samtidigt, är sannolikheten att någon av dem inträffar summan av deras individuella sannolikheter.

Regel

P(A eller B)=P(A)+P(B)P(A\text{ eller }B)=P(A)+P(B)

Träddiagram

Träddiagram kan användas för att visualisera slumpförsök som består av flera steg, t.ex. om man singlar slant två gånger. Varje förgrening i trädet representerar ett kast och cirklarna anger de möjliga utfallen som kastet kan ge: krona (Kr) och klave (Kl). Ofta skriver man ut sannolikheter längs varje gren om de är kända.

Traddiagram KrKl one.svg

Varje väg genom trädet representerar en av de fyra händelser som kan ske om ett mynt singlas två gånger. Man brukar representera händelserna genom att skriva kombinationen av utfall inom parentes, t.ex. (Kr, Kr) för händelsen att få krona i både första och andra slantsinglingen. Sannolikheten för någon av händelserna får man genom att multiplicera sannolikheterna längs grenen.

Traddiagram KrKl two 4a.svg

Om man vill beräkna sannolikheten för att samma sida av myntet kommer upp båda gångerna, dvs. händelsen (Kr, Kr) eller (Kl, Kl), måste man addera sannolikheterna för varje gren.

Traddiagram 3.svg


Utfallsmatris

Utfallsmatriser kan användas för att visualisera slumpförsök i två steg om alla utfall är lika sannolika. De kan vara att föredra om antalet utfall är så många att det blir oöverskådligt med ett träddiagram. Det är vanligt att man använder dem för att representera möjliga utfall vid två tärningskast. Man kan t.ex. bestämma sannolikheten för att få både en 22:a och en 55:a. Det spelar ingen roll vad man får först, så det finns 22 gynnsamma utfall.

Utfallsmatris Wordlist 3d.svg

Sannolikheten för händelsen kan beräknas med sannolikhetsformeln, alltså genom att dividera antal gynnsamma utfall (22 st.) med antal möjliga (3636 st.):

2360.06=6%. \frac{2}{36}\approx0.06=6\,\%.

Uppgifter