Rotuttryck

Ett rotuttryck måste inte vara en kvadratrot utan roten kan även vara högre. I rotuttrycket 273,\sqrt[3]{27}, vilket utläses kubikroten ur 2727 eller "tredje roten ur 2727", så anger 33:an typen av rot. Det är alltså det tal som multiplicerat med sig självt 33 gånger blir 27,27, alltså 3.3. Om typen av rot inte anges i ett rotuttryck är det underförstått att man menar kvadratroten.

Generellt är an\sqrt[n]{a} det tal som multiplicerat med sig själv nn gånger är lika med a.a.

ananann st.=a\underbrace{\sqrt[n]{a} \cdot \sqrt[n]{a}\, \cdot \ldots \cdot \, \sqrt[n]{a}}_{n\text{ st.}}=a

På räknaren finns det också inbyggd funktionalitet för att skriva rotuttryck. Ett annat sätt att skriva rotuttryck är som en potens med ett bråk i exponenten, dvs. a1/na^{1/n} eller ab/n.a^{b/n}.