pqpq-formeln

Alla andragradsekvationer kan skrivas på formen x2+px+q=0, x^2+px+q=0, där pp och qq är konstanter. Detta kan kallas pqpq-form. Koefficienten framför x2x^2 ska vara 11 och ena ledet 0,0, som i ekvationen x2+6x5=0. x^2 + 6x - 5 = 0. För att lösa den sätter man in koefficienten framför x,x, kallad p, samt konstanttermen, q, i den så kallade pq-formeln.

x=-p2±(p2)2qx=\text{-} \dfrac{p}{2}\pm\sqrt{\left(\dfrac{p}{2}\right)^2-q}

I ekvationen x2+6x5=0x^2 + 6x - 5 = 0 är p=6p=6 och q=-5.q= \text{-}5. Genom insättning och förenkling får man maximalt två lösningar: en genom att addera och en genom att subtrahera rotuttrycket. Om ekvationen inte är skriven på pqpq-form måste den skrivas om innan pqpq-formeln kan användas. Ett alternativ är att använda abcabc-formeln.

Härledning

x=-p2±(p2)2qx=\text{-} \dfrac{p}{2}\pm\sqrt{\left(\dfrac{p}{2}\right)^2-q}