Andragradsfunktioner som modeller

Andragradsfunktioner kan beskriva många saker i verkligheten, t.ex. en kastparabel. Exempelvis kan en andragradsfunktion beskriva hur en kula rör sig efter att den har stötts, eller hur en tennisboll studsar mellan två planhalvor.

Shotputter.svg

Det kan därför vara intressant att undersöka hur några av andragradskurvans egenskaper kan tolkas i en verklig situation.

Kurvans extremvärde

Andragradskurvans extremvärde är det största eller minsta värdet för funktionen. Det kan till exempel vara den högsta höjden över marken för en boll som kastas, eller den maximala vinsten för ett företag.

Skärningspunkten med yy-axeln

Där kurvan skär yy-axeln tolkas ofta som en kaströrelses början, och kan därför avläsas som starthöjden över marken när något kastas.

Eventuella nollställen

Grafens ena nollställe representerar ofta den punkt då bollen slår i marken, vilket gör det möjligt att beräkna kastets längd.