Expandera meny menu_open Minimera Startsida kapitel Startsida Historik history Historik expand_more
{{ item.displayTitle }}
navigate_next
Ingen historik än!
Statistik equalizer Statistik expand_more
Student
navigate_next
Lärare
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
Inget resultat
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Logga in för att se statistik
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Använd offline Verktyg apps
Logga in account_circle menu_open

Mega 1.6 Ferenc

Question

Exercise 6
Solve the following equation. 3(3m2)=2(3m+3)\begin{aligned} 3(3m-2)=2(3m+3) \end{aligned}

Answer

m=4m=4

Hint

Start with expanding the expressions on both sides.

Solution

We need to find the value of mm for which the two sides evaluate to the same number. We start with expanding the expressions on both sides of the equality.
3(3m2)=2(3m+3)3(3m-2)=2(3m+3)
9m6=6m+69m-6=6m+6
Next we use inverse operations to isolate m.m.
9m6=6m+69m-6=6m+6
9m6m6=69m-6m-6=6
9m6m=129m-6m=12
(96)m=12(9-6)m=12
3m=123m=12
m=4m=4
Hence, the value that makes the equality true is m=4.m=4.