Välj kapitel {{ courseTrack.signature }} Välj kurs

{{ article.chapterName }}

{{ article.displayTitle }}

Teori

Likformighet

Två geometriska figurer med samma form men inte nödvändigtvis samma storlek kallas likformiga. Om två figurer är likformiga gäller följande.

  • Motsvarande vinklar i figurerna är lika stora.
  • Kvoten, dvs. förhållandet, mellan två motsvarande sidor i figurerna är lika stor för alla sidor.

Med "motsvarande" menas vinklar och sidor som har samma relativa placering i figurerna, t.ex. hypotenusan i två likformiga rätvinkliga trianglar.

Två likformiga trianglar

Notation

Likformighet: \sim

Likformiga trianglar

För att avgöra om två trianglar är likformiga räcker det med att undersöka om två par av motsvarande vinklar är likadana. Om detta gäller måste även vinklarna i det tredje paret vara lika stora eftersom vinkelsumman är 180180^\circ i alla trianglar.

Två likformiga trianglar
För tre givna vinklar går det bara att rita upp en typ av triangel, vilket innebär att förhållandet mellan de motsvarande sidorna måste vara likadant. Delar man sidorna i en av trianglarna med motsvarande sidor i den andra triangel får man alltså en konstant kvot.

ABDE=BCEF=ACDF\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}

Exempel

Bestäm de okända sidorna med likformighet

Kongruens

Om två geometriska figurer både är likformiga och har samma storlek, dvs. är kopior av varandra, säger man att de är kongruenta. Så länge dessa krav är uppfyllda spelar det ingen roll hur de är ritade, vilket innebär att även spegelvända och roterade figurer kan vara kongruenta med varandra.

Tre kongruenta fyrhörningar

Trots att den blå figuren är spegelvänd och den röda har roterats jämfört med den gröna är de alltså alla kongruenta med varandra.

Notation

Kongruens: \cong


Uppgifter