Likformighet och kongruens

{{ 'ml-heading-theory' | message }}

Begrepp

Likformighet

Två geometriska figurer med samma form men inte nödvändigtvis samma storlek kallas likformiga. Om två figurer är likformiga gäller följande.

  • Motsvarande vinklar i figurerna är lika stora.
  • Kvoten, dvs. förhållandet, mellan två motsvarande sidor i figurerna är lika stor för alla sidor.

Med "motsvarande" menas vinklar och sidor som har samma relativa placering i figurerna, t.ex. hypotenusan i två likformiga rätvinkliga trianglar.

Två likformiga trianglar

Notation

Likformighet: \sim
Regel

Likformiga trianglar

För att avgöra om två trianglar är likformiga räcker det med att undersöka om två par av motsvarande vinklar är likadana. Om detta gäller måste även vinklarna i det tredje paret vara lika stora eftersom vinkelsumman är 180180^\circ i alla trianglar.

Två likformiga trianglar
För tre givna vinklar går det bara att rita upp en typ av triangel, vilket innebär att förhållandet mellan de motsvarande sidorna måste vara likadant. Delar man sidorna i en av trianglarna med motsvarande sidor i den andra triangel får man alltså en konstant kvot.

ABDE=BCEF=ACDF\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}

Uppgift

Figurerna är likformiga med längder angivna i meter. Bestäm de okända sidorna xx och y.y.

två likformiga fyrhörningar
Visa lösning Visa lösning
Begrepp

Kongruens

Om två geometriska figurer både är likformiga och har samma storlek, dvs. är kopior av varandra, säger man att de är kongruenta. Så länge dessa krav är uppfyllda spelar det ingen roll hur de är ritade, vilket innebär att även spegelvända och roterade figurer kan vara kongruenta med varandra.

Tre kongruenta fyrhörningar

Trots att den blå figuren är spegelvänd och den röda har roterats jämfört med den gröna är de alltså alla kongruenta med varandra.

Notation

Kongruens: \cong
Regel

Kongruenta trianglar

För att avgöra om två trianglar är kongruenta med varandra behöver man inte veta att alla sidor och alla vinklar överensstämmer med varandra. Det finns tre kongruensfall där det räcker att man känner till en kombination av tre vinklar eller sidor. Om något av följande fall är uppfyllda gäller automatiskt även de andra kongruensvillkoren.

Sida-Sida-Sida (SSS)

Trianglar med lika stora sidor är kongruenta.

Sida-Vinkel-Sida (SVS)

Trianglar med två lika stora sidor och lika stor vinkel mellan dem är kongruenta.

Vinkel-Sida-Vinkel (VSV)

Trianglar med två lika stora vinklar och lika stor mellanliggande sida är kongruenta.
Uppgift

Vilka av trianglarna B,C,DB,\,C,\,D och EE kan du med säkerhet säga är kongruenta med triangeln A?A?

Fem trianglar varav vissa är kongruenta
Visa lösning Visa lösning

{{ 'ml-heading-exercises' | message }}

{{ subject.displayTitle }}
Begrepp

Likformighet

Två geometriska figurer med samma form men inte nödvändigtvis samma storlek kallas likformiga. Om två figurer är likformiga gäller följande.

  • Motsvarande vinklar i figurerna är lika stora.
  • Kvoten, dvs. förhållandet, mellan två motsvarande sidor i figurerna är lika stor för alla sidor.

Med "motsvarande" menas vinklar och sidor som har samma relativa placering i figurerna, t.ex. hypotenusan i två likformiga rätvinkliga trianglar.

Två likformiga trianglar

Notation

Likformighet: \sim
Regel

Likformiga trianglar

För att avgöra om två trianglar är likformiga räcker det med att undersöka om två par av motsvarande vinklar är likadana. Om detta gäller måste även vinklarna i det tredje paret vara lika stora eftersom vinkelsumman är 180180^\circ i alla trianglar.

Två likformiga trianglar
För tre givna vinklar går det bara att rita upp en typ av triangel, vilket innebär att förhållandet mellan de motsvarande sidorna måste vara likadant. Delar man sidorna i en av trianglarna med motsvarande sidor i den andra triangel får man alltså en konstant kvot.

ABDE=BCEF=ACDF\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}

Uppgift

Figurerna är likformiga med längder angivna i meter. Bestäm de okända sidorna xx och y.y.

två likformiga fyrhörningar
Visa lösning Visa lösning
Begrepp

Kongruens

Om två geometriska figurer både är likformiga och har samma storlek, dvs. är kopior av varandra, säger man att de är kongruenta. Så länge dessa krav är uppfyllda spelar det ingen roll hur de är ritade, vilket innebär att även spegelvända och roterade figurer kan vara kongruenta med varandra.

Tre kongruenta fyrhörningar

Trots att den blå figuren är spegelvänd och den röda har roterats jämfört med den gröna är de alltså alla kongruenta med varandra.

Notation

Kongruens: \cong
Regel

Kongruenta trianglar

För att avgöra om två trianglar är kongruenta med varandra behöver man inte veta att alla sidor och alla vinklar överensstämmer med varandra. Det finns tre kongruensfall där det räcker att man känner till en kombination av tre vinklar eller sidor. Om något av följande fall är uppfyllda gäller automatiskt även de andra kongruensvillkoren.

Sida-Sida-Sida (SSS)

Trianglar med lika stora sidor är kongruenta.

Sida-Vinkel-Sida (SVS)

Trianglar med två lika stora sidor och lika stor vinkel mellan dem är kongruenta.

Vinkel-Sida-Vinkel (VSV)

Trianglar med två lika stora vinklar och lika stor mellanliggande sida är kongruenta.
Uppgift

Vilka av trianglarna B,C,DB,\,C,\,D och EE kan du med säkerhet säga är kongruenta med triangeln A?A?

Fem trianglar varav vissa är kongruenta
Visa lösning Visa lösning
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-btn-focusmode-tooltip' | message }} chrome_reader_mode
{{ 'mldesktop-selftest-label' | message }}
{{ 'mldesktop-selftest-notests' | message }} {{ article.displayTitle }}!
{{ tests.error }}

{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}

keyboard_backspace
{{ section.title }}
keyboard_backspace {{ 'ml-btn-previous' | message }} {{ 'ml-btn-previous-exercise' | message }} {{ 'ml-btn-next-exercise' | message }} keyboard_backspace {{ 'ml-btn-next-exercise' | message }}