Bestäm funktion utifrån graf

För att bestämma en funktion utifrån en graf måste man först veta vilken typ av graf det är. När man vet det, behöver man känna till minst lika många punkter som antalet konstanter i funktionens allmänna form. Nedan har grafen till en exponentialfunktion ritats.

För att bestämma funktionsuttrycket till grafen kan man använda följande metod.

Grafen beskriver en exponentialfunktion, vilket betyder att den allmänna formen är y=Cax. y=C\cdot a^x. Antalet okända konstanter är två stycken: startvärdet CC och förändringsfaktorn a.a.

Det finns två okända konstanter och därför behövs två olika punkter för att bestämma dessa värden.

Grafen går exempelvis igenom (1,1),(1,1), och (2,3)(2,3).

Punkterna sätts in i funktionsuttrycket och man får då två ekvationer: 1=Ca1och3=Ca2. 1=C\cdot a^{1} \quad \text{och} \quad 3=C\cdot a^{2}.

Eftersom det finns två okända variabler och två ekvationer som beskriver samma funktion, kan man ställa upp ett ekvationssystem: {1=Ca13=Ca2. \begin{cases}1=C\cdot a^{1} \\ 3=C\cdot a^{2}. \end{cases} Nu kan man använda t.ex. substitutionsmetoden för att bestämma de okända konstanterna.

{1=Ca1(I)3=Ca2(II)\begin{cases}1=C\cdot a^{1} & \, \text {(I)}\\ 3=C\cdot a^{2} & \text {(II)}\end{cases}
(I): {\color{#8C8C8C}{\text{(I): }}} Förenkla potens
{1=Ca3=Ca2\begin{cases}1=C\cdot a \\ 3=C\cdot a^{2} \end{cases}
{1a=C3=Ca2\begin{cases}\frac{1}{a}=C \\ 3=C\cdot a^{2} \end{cases}
{C=1a3=Ca2\begin{cases}C=\frac{1}{a} \\ 3=C\cdot a^{2} \end{cases}
{C=1a3=1aa2\begin{cases}C=\frac{1}{a} \\ 3={\color{#0000FF}{\frac{1}{a}}}\cdot a^{2} \end{cases}
{C=1a3=a2a\begin{cases}C=\frac{1}{a} \\ 3=\frac{a^2}{a} \end{cases}
{C=1a3=a\begin{cases}C=\frac{1}{a} \\ 3=a \end{cases}
{C=1aa=3\begin{cases}C=\frac{1}{a} \\ a=3 \end{cases}
{C=13a=3\begin{cases}C=\frac{1}{{\color{#0000FF}{3}}} \\ a=3 \end{cases}

Till sist sätts värdena för konstanterna in i funktionsuttrycket. För exemplet sätter man in C=13C=\frac{1}{3} och a=3a=3, vilket ger y=133x. y=\dfrac{1}{3}\cdot 3^x.