Den här sidan innehåller förändringar som inte är märkta för översättning.


Bestäm extrempunkt för en andragradsfunktion

För att hitta extrempunkten för en andragradsfunktion, t.ex.

f(x)=x212x+37, f(x) = x^2 - 12x + 37, använder man att den punkten alltid ligger på symmetrilinjen.

Med valfri metod hittar man först symmetrilinjen till andragradsfunktionen. Man kan t.ex. sätta funktionsuttrycket lika med 00 och använda pqpq-formeln.

x212x+37=0x^2 - 12x + 37=0
x=--122±(-122)237x=\text{-} \dfrac{\color{#0000FF}{\text{-} 12}}{2}\pm \sqrt{\left(\dfrac{\color{#0000FF}{\text{-} 12}}{2}\right)^2-{\color{#009600}{37}}}
x=-(-6)±(-122)37x=\text{-} (\text{-} 6)\pm\sqrt{\left(\dfrac{\text{-} 12}{2}\right) - 37}
x=6±(-122)37x=6\pm\sqrt{\left(\dfrac{\text{-} 12}{2}\right) - 37}

Värdet framför rotuttrycket är 6,6,xs=6.x_s = 6.

Eftersom symmetrilinjen alltid går genom extrempunkten sätter man in xx-värdet för den och beräknar funktionsvärdet där.
f(x)=x212x+37f(x) = x^2 - 12x + 37
x=6x={\color{#0000FF}{6}}
f(6)=62126+37f({\color{#0000FF}{6}}) = {\color{#0000FF}{6}}^2 - 12 \cdot {\color{#0000FF}{6}} + 37
f(6)=3672+37f(6) = 36 - 72 + 37
f(6)=1f(6) = 1

Funktionens extrempunkt är alltså (6,1).(6,1).

I funktionen f(x)=x212x+37f(x)=x^2-12x+37 är x2x^2-termen positiv. Grafens form blir då en "glad mun", så (6,1)(6,1) är en minimipunkt.

Ett annat sätt att hitta extrempunkten är att använda räknarens verktyg för detta.